Subscribe to RSS
DOI: 10.1055/s-0030-1259939
Enantioselective Brønsted Acid Catalysis in the Friedel-Crafts Reaction of Indoles with Secondary ortho-Hydroxybenzylic Alcohols
Publication History
Publication Date:
18 April 2011 (online)
Abstract
The reaction of indole and various methyl-substituted indoles with the title compounds was studied in the presence of chiral phosphoric acids, which act as Brønsted acid catalysts. While yields were generally high (>90%), significant enantioselectivities (up to 77% ee) were only achieved for certain substrate-catalyst combinations. In addition, a kinetic resolution of the starting material was observed, which led to an enrichment of one chiral alcohol to up to 68% ee after 76% conversion. The Friedel-Crafts reaction is not stereospecific (no direct SN2-type substitution), but rather is likely to proceed via a cation, which is bound to the chiral Brønsted acid or its anion in a close contact ion pair.
Key words
carbocations - stereoselective synthesis - electrophilic aromatic substitutions - alkylations - enantioselectivity - organocatalysis
- Supporting Information for this article is available online:
- Supporting Information
- Primary data for this article are available online and can be cited using the following DOI: 10.4125/pd0011th:
- Primary Data FIDs and associated files for the ¹H and ¹³C NMR spectra for compounds 3, 4, 8, 9, 10, 11, 12, and 13 are summarized.
- 1 Short review:
Cozzi PG.Benfatti F. Angew. Chem. Int. Ed. 2010, 49: 256 ; Angew. Chem. 2010, 122: 264 -
2a
Catalytic Asymmetric Friedel-Crafts
Alkylations
Bandini M.Umani-Ronchi A. Wiley-VCH; Weinheim: 2009. -
2b
Rueping M.Nachtsheim BJ. Beilstein J. Org. Chem. 2010, 6: No. 6 -
2c
Terrasson V.Marcia de Figueiredo R.Campagne JM. Eur. J. Org. Chem. 2010, 2635 -
2d
Poulsen TB.Jørgensen KA. Chem. Rev. 2008, 108: 2903 -
3a
Mühlthau F.Schuster O.Bach T. J. Am. Chem. Soc. 2005, 127: 9348 -
3b
Mühlthau F.Bach T. Synthesis 2005, 3428 -
3c
Stadler D.Mühlthau F.Rubenbauer P.Herdtweck E.Bach T. Synlett 2006, 2573 -
3d
Stadler D.Bach T. Chem. Asian J. 2008, 3: 272 -
3e
Stadler D.Bach T. Angew. Chem. Int. Ed. 2008, 47: 7557 -
4a
Mühlthau F.Stadler D.Goeppert A.Olah GA.Prakash GKS.Bach T. J. Am. Chem. Soc. 2006, 128: 9668 -
4b
Stadler D.Goeppert A.Rasul G.Olah GA.Prakash GKS.Bach T. J. Org. Chem. 2009, 74: 312 - Reviews:
-
5a
Terada M. Synthesis 2010, 1929 -
5b
You S.-L.Cai Q.Zeng M. Chem. Soc. Rev. 2009, 38: 2190 -
5c
Terada M. Chem. Commun. 2008, 4097 -
5d
Akiyama T. Chem. Rev. 2007, 107: 5744 -
5e
Zamfir A.Schenker S.Freund M.Tsogoeva SB. Org. Biomol. Chem. 2010, 8: 5262 - 6
Uraguchi T.Terada M. J. Am. Chem. Soc. 2004, 126: 5356 - 7
Akiyama T.Itoh J.Yokota K.Fuchibe K. Angew. Chem. Int. Ed. 2004, 43: 1566 -
8a
Sun F.-L.Zeng M.Gu Q.You S.-L. Chem. Eur.
J. 2009, 15: 8709 -
8b
Sun F.-L.Zheng X.-J.Gu Q.He Q.-L.You S.-L. Eur. J. Org. Chem. 2010, 47 -
8c See also:
Rueping M.Nachtsheim BJ.Moreth SA.Bolte M. Angew. Chem. Int. Ed. 2008, 47: 593 - 9
Guo Q.-X.Peng Y.-G.Zhang J.-W.Song L.Feng Z.Gong L.-Z. Org. Lett. 2009, 11: 4620 - 10
Liang T.Zhang Z.Antilla JC. Angew. Chem. Int. Ed. 2010, 49: 9734 - For recent work on ion pairs with onium and iminium ions, see:
-
11a
Čorić I.Müller S.List B. J. Am. Chem. Soc. 2010, 132: 17370 -
11b
Yu X.Lu A.Wang Y.Wu G.Song H.Zhou Z.Tang C. Eur. J. Org. Chem. 2011, 892 ; and references cited therein - 12
Nakashima D.Yamamoto H. J. Am. Chem. Soc. 2006, 128: 9626 - 13
Specht DP.Martic PA.Farid S. Tetrahedron 1982, 38: 1203 - 14
Katritzky AR.Ji Y.Fang Y.Prakash I. J. Org. Chem. 2001, 66: 5613 - 15
Baciocchi E.Bietti M.Putignani L.Steenken S. J. Am. Chem. Soc. 1996, 118: 5952 -
16a
Wu TR.Shen L.Chong JM. Org. Lett. 2004, 6: 2701 -
16b
Jacques J.Fouquey C. Org. Synth. 1989, 67: 1 -
16c
Storer RI.Carrera DE.Ni Y.MacMillan DWC. J. Am. Chem. Soc. 2006, 128: 84 - 17
Klussmann M.Ratjen L.Hoffmann S.Wakchaure V.Goddard R.List B. Synlett 2010, 2189 - Relevant reviews:
-
18a
Bandini M.Melloni A.Tommasi S.Umani-Ronchi A. Synlett 2005, 1199 -
18b
Bandini M.Eichholzer A. Angew. Chem. Int. Ed. 2009, 48: 9608 -
18c
Zeng M.You S.-L. Synlett 2010, 1289 -
18d
Bartoli G.Bencivenni G.Dalpozzo R. Chem. Soc. Rev. 2010, 39: 4449 - 21 First example of a kinetic resolution
with chiral phosphoric acids:
Enders D.Narine AA.Toulgoat F.Bisschops T. Angew. Chem. Int. Ed. 2008, 47: 5661
References and Notes
Representative
Procedure (8)
A Schlenk flask containing 250 mg of
4 Å MS was charged with benzylic alcohol 3 (21.0 mg, 100 µmol) and indole (46.9
mg, 400 µmol) in dry trifluorotoluene (1.5 mL). Catalyst 7g (7.53 mg, 10 µmol) was added,
and the resulting mixture was stirred at r.t. until the starting
material was completely consumed (monitored by TLC). The crude reaction
mixture was purified directly by flash column chromatography on
silica gel (eluent: pentane-Et2O = 4:1
to 2:1) yielding compound 8 (30.9 mg, 100 µmol,
quant., 50% ee) as a light-brown solid. ¹H
NMR (360 MHz, CDCl3): δ = 1.15 (s,
9 H), 3.71 (s, 3 H), 4.51 (s, 1 H), 5.30 (s, 1 H), 6.28 (d, 4
J = 2.3 Hz,
1 H), 6.44 (dd, ³
J = 8.5
Hz, 4
J = 2.3
Hz, 1 H), 7.04 (virt. t, ³
J = ca.
7.5 Hz, 1 H), 7.15 (virt. t, ³
J = ca.
7.6 Hz, 1 H), 7.26 (d, ³
J = 8.5
Hz, 1 H), 7.29 (d, ³
J = 8.1
Hz, 1 H), 7.36 (d, ³
J = 1.9
Hz, 1 H), 7.52 (d, ³
J = 8.0
Hz, 1 H), 8.02 (br s, 1 H) ppm. ¹³C
NMR (90.6 MHz, CDCl3): δ = 28.9, 35.8,
45.4, 55.1, 101.6, 105.8, 110.8, 117.3, 119.4, 119.5, 121.2, 121.5,
122.2, 128.7, 132.1, 135.5, 154.9, 158.6 ppm. HRMS: m/z calcd for C20H23NO2:
309.1723; found: 309.1724.
An analysis of the absolute structure
based on Bayesian statistics and Friedel pairs with a coverage of
99% resulted in a probability of 1.00.
Crystal Data
Formula: C20H23NO2˙C4H10O; M
r = 383.51;
crystal color and shape: colorless fragment, crystal dimensions:
0.13 × 0.23 × 0.69 mm; crystal system: monoclinic;
space group: P21 (no. 4); a = 10.2950
(4), b = 7.7382
(3), c = 15.1602
(5) Å, β = 104.737
(2)˚; V = 1168.00(8) ų; Z = 2; µ
MoK
α = 0.071
mm-¹; ρ
calcd = 1.090
g cm-³; θ range = 1.39-25.33˚;
data collected: 27134; independent data [I
o > 2σ (I
o)/all
data/R
int]:
3857/4255/0.027; data/restraints/parameters: 4255/1/267; R1 [I
o > 2σ (I
o)/all
data]: 0.0376/0.0419; wR2
[I
o > 2σ (I
o)/all
data]: 0.1086/0.1119; GOF = 1.089; Δρ
max/min:
0.11/-0.13 e Å-³;
Flack parameter; x = -0.6
(13); ‘Flack Equivalent’ Hooft parameter y = -0.3
(3). For detailed information see Supporting Information. CCDC 808871
[(-)-8] contains the supplementary
crystallographic data for this compound. This data can be obtained
free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
Crystal Data
Formula:
C12H18O3; M
r = 210.26;
crystal color and shape: colorless fragment, crystal dimensions:
0.46 × 0.51 × 0.61 mm; crystal system: orthorhombic;
space group: P212121 (no.
19); a = 6.6950
(1), b = 9.1455
(2), c = 19.2531
(4) Å; V = 1178.85
(4) ų; Z = 4; µ
CuK
α = 0.680
mm-¹; ρ
calcd = 1.185
g cm-³; θ range = 4.59-66.30˚;
data collected: 27197; independent data [I
o > 2σ (I
o)/all
data/R
int]:
1984/1995/0.027; data/restraints/parameters:
1995/0/209; R1 [I
o > 2σ (I
o)/all
data]: 0.0215/0.0216; wR2 [I
o > 2σ (I
o)/all
data]: 0.0582/0.0582; GOF = 1.111; Δρ
max/min:
0.13/-0.12 e Å-³; Flack
parameter; x = 0.03
(15); ‘Flack Equivalent’ Hooft parameter y = 0.05 (3).
For detailed information see Supporting Information. CCDC 808870 [(+)-3)] contains the supplementary
crystallographic data for this compound. This data can be obtained
free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.