Subscribe to RSS
DOI: 10.1055/s-0030-1260085
Selective Electrochemical Fluorodesulfurization of Benzo- and Pyrido-Fused Oxazine Derivatives Using Ex-cell Halogen Mediators
Publication History
Publication Date:
21 June 2011 (online)
Abstract
Although the direct anodic fluorination of 3-phenyl-2H-1,4-benzoxazine was not very effective, the fluorodesulfurization of 3-aryl-2-(phenylsulfanyl)-2H-1,4-benzoxazines using various anodically generated halogen mediators in the presence of triethylamine tris(hydrogen fluoride) by an ex-cell method efficiently and selectively provided the corresponding monofluorinated products. In sharp contrast, in-cell halogen mediators did not work well. Furthermore, the selective fluorodesulfurization of pyrido[3,2-b][1,4]oxazine derivatives was also successfully carried out using the same ex-cell method to provide the corresponding monofluorinated products in moderate yields.
Key words
halogenation - fluorine - heterocycles - electron transfer - oxidations
-
1a
Tricarico D.Mele A.Camerino GM.Laghezza A.Carbonara G.Fracchiolla G.Tortorella P.Loiodice F.Camerino DC. Mol. Pharmacol. 2008, 74: 50 -
1b
Tricarico D.Barbieri M.Laghezza A.Tortorella P.Loiodic F.Camerino DC. Br. J. Pharmacol. 2003, 139: 255 -
1c
Matsumoto Y.Tsuzuki R.Matsuhisa A.Takayama K.Yoden T.Uchida W.Asano M.Fujita S.Yanagisawa I.Fujikura T. Chem. Pharm. Bull. 1996, 44: 103 -
1d
Kajino M.Shibouta Y.Nishikawa K.Meguro K. Chem. Pharm. Bull. 1991, 39: 2896 -
1e
Kuroita T.Sakamori M.Kawakita T. Chem. Pharm. Bull. 1996, 44: 756 -
1f
Matsuoka H.Ohi N.Mihara M.Suzuki H.Miyamoto K.Maruyama N.Tsuji K.Kato N.Akimoto T.Takeda Y.Yano K.Kuroki T. J. Med. Chem. 1997, 40: 105 -
1g
Savelon L.Bizot-Espiard JG.Gaignard DH.Pfeiffer B.Renard P.Viaud MC.Guillaumet G. Bioorg. Med. Chem. 1998, 6: 133 -
2a
Bioorganic and Medicinal Chemistry of Fluorine
Bégué JP.Bonnet-Delpon D. Wiley; Hoboken NJ: 2008. -
2b
Organofluorine
Compounds
Hiyama T. Springer; Berlin: 2000. -
2c
Biomedicinal
Aspects of Fluorine Chemistry
Filler R.Kobayashi Y. Kondansha and Elsevier Biomedical; Tokyo: 1982. -
3a
Fuchigami T.Shimojo M.Konno A.Nakagawa K. J. Org. Chem. 1990, 55: 6074 -
3b
Fuchigami T.Narizuka S.Konno A. J. Org. Chem. 1992, 57: 3755 -
3c
Konno A.Naito W.Fuchigami T. Tetrahedron Lett. 1992, 33: 7017 -
3d
Narizuka S.Fuchigami T. J. Org. Chem. 1993, 58: 4200 -
3e
Fuchigami T.Konno A.Nakagawa K.Shimogo M. J. Org. Chem. 1994, 59: 5937 -
3f
Erian AW.Konno A.Fuchigami T. J. Org. Chem. 1995, 60: 7654 -
3g
Higashiya S.Narizuka S.Konno A.Maeda T.Momomota K.Fuchigami T. J. Org. Chem. 1999, 64: 133 -
3h
Ishii H.Yamada N.Fuchigami T. Chem. Commun. 2000, 1617 -
3i
Shaaban MR.Ishii H.Fuchigami T.
J. Org. Chem. 2000, 65: 8685 -
3j
Shaaban MR.Ishii H.Fuchigami T. J. Org. Chem. 2001, 66: 5633 -
4a
Shaaban MR.Fuchigami T. Synlett 2001, 1644 -
4b
Iwayasu N.Shaaban MR.Fuchigami T. Heterocycles 2002, 57: 623 - 5
Dawood KM.Ishii H.Fuchigami T. J. Org. Chem. 2001, 66: 7030 - 6
Dawood KM.Fuchigami T. J. Org. Chem. 2001, 66: 7691 - 7
Shaaban MR.Inagi S.Fuchigami T. Electrochim. Acta 2009, 54: 2635 - 8
Olah GA.Welch JT.Vankar YD.Nojima M.Kerekes I.Olah JA. J. Org. Chem. 1979, 44: 3872 - 9
López JC.Albert PB.Uriel C.Gómez AM. Eur. J. Org. Chem. 2008, 5037 - 10
Yin B.Inagi S.Fuchigami T. Synlett 2010, 2146 - 11
Banzatti C.Heidemepergher F.Melloni P. J. Heterocycl. Chem. 1983, 20: 259 -
12a
Padmanabhan S.Ogawa T.Suzuki H. Bull. Chem. Soc. Jpn. 1989, 62: 1358 -
12b
Groebel W. Chem. Ber. 1960, 93: 896 -
13a
Hou YK.Fuchigami T. J. Electrochem. Soc. 2000, 147: 4567 -
13b
Inagi S.Sawamura T.Fuchigami T. Electrochem. Commun. 2008, 10: 1158 - 14
Yoshiyama T.Fuchigami T. Chem. Lett. 1992, 1995 -
15a
Sondej SC.Katzenellenbogen JA. J. Org. Chem. 1986, 51: 3508 -
15b
Kuroboshi M.Hiyama T. Synlett 1999, 909 -
15c
Motherwell WB.Wilkinson JA. Synlett 1999, 191 -
15d
Chambers RD.Sandford G.Atherton M.
J. Chem. Soc., Chem. Commun. 1995, 177 - 16
Ringom R.Benneche T. Acta Chem. Scand. 1999, 53: 41 - 17 DFT B3LYP 6-31G(d) using a Gaussian
03 program;
Frisch MJ.Trucks GW.Schlegel HB.Scuseria GE.Robb MA.Cheeseman JR.Montgomery JA.Vreven T.Kudin KN.Burant JC.Millam JM.Iyengar SS.Tomasi J.Barone V.Mennucci B.Cossi M.Scalmani G.Rega N.Petersson GA.Nakatsuji H.Hada M.Ehara M.Toyota K.Fukuda R.Hasegawa J.Ishida M.Nakajima T.Honda Y.Kitao O.Nakai H.Klene M.Li X.Knox JE.Hratchian HP.Cross JB.Bakken V.Adamo C.Jaramillo J.Gomperts R.Stratmann RE.Yazyev O.Austin AJ.Cammi R.Pomelli C.Ochterski JW.Ayala PY.Morokuma K.Voth GA.Salvador P.Dannenberg JJ.Zakrzewski VG.Dapprich S.Daniels AD.Strain MC.Farkas O.Malick DK.Rabuck AD.Raghavachari K.Foresman JB.Ortiz JV.Cui Q.Baboul AG.Clifford S.Cioslowski J.Stefanov BB.Liu G.Liashenko A.Piskorz P.Komaromi I.Martin RL.Fox DJ.Keith T.Al-Laham MA.Peng CY.Nanayakkara A.Challacombe M.Gill PMW.Johnson B.Chen W.Wong MW.Gonzalez C.Pople JA. Gaussian 03, Revision C.01 Gaussian Inc.; Wallingford (CT): 2004. - 18
Fuchigami T.Sano M. J. Electroanal. Chem. 1996, 414: 81 - 19
Fuchigami T.Mitomo K.Ishii H.Konno A. J. Electroanal. Chem. 2001, 507: 30 - 20
Miller LL.Kujawa EP.Campbell CB. J. Am. Chem. Soc. 1970, 92: 2821
References
When 0.5 equivalent of molecular iodine were used under the ex-cell method conditions, the corresponding monofluorinated product 4a was obtained in only 45% yield.