Abstract
Conjugated dienediynes and enediynes with definite geometry have
been prepared in a one-pot manner. This protocol involves two types
of coupling reaction, a Suzuki-type coupling and either a Hay coupling
or a Cadiot-Chodkiewicz coupling. Thus, the copper-mediated
cross-coupling reaction of (E )-alk-1-enyldisiamylborane
with (trimethylsilyl)ethynyl bromide is carried out in the presence
of 1 M NaOMe to generate (E )-alk-3-en-1-yne,
which is subjected to either palladium/copper-catalyzed
homocoupling in the presence of DABCO or copper-catalyzed heterocoupling
with 1-iodoalk-1-yne in the presence of TBD or pyrrolidine in a
single reaction pot without isolating (E )-alk-3-en-1-yne.
The homocoupling has realized the stereoselective construction of
(1E ,7E )-alka-1,7-diene-3,5-diynes,
and the heterocoupling has achieved the formation of (E )-alk-1-ene-3,5-diynes. In addition,
starting from (Z )-alk-1-enyldisiamylborane
instead of the E -isomer, this series
of reactions has led to the formation of (1Z ,7Z )-alka-1,7-diene-3,5-diynes and (Z )-alk-1-ene-3,5-diynes, albeit limiting
the scope of the substrate.
Key words
alkenylborane - (trimethylsilyl)ethynyl bromide - alk-1-en-3-yne - Suzuki-type reaction - acetylenic coupling
References
1a
Siemsen P.
Livingston RC.
Diederich F.
Angew. Chem. Int. Ed.
2000,
39:
2632 ; and references cited therein
1b
Metal-Catalyzed
Cross-Coupling Reactions
Vol. 1:
de Meijere A.
Diederich F.
Wiley-VCH;
Weinheim:
2004.
2
Shi Shun ALK.
Tykwinski RR.
Angew.
Chem. Int. Ed.
2006,
45:
1034 ;
and references cited therein
3a
Tour JM.
Acc. Chem. Res.
2000,
33:
791
3b
Bunz UHF.
Chem. Rev.
2000,
100:
1605
3c
Gholami M.
Tykwinski RR.
Chem. Rev.
2006,
106:
4997
4
Hay AS.
J.
Org. Chem.
1962,
27:
3320
5a
Kabalka GW.
Wang L.
Pagni RM.
Synlett
2001,
108
5b
Lei A.
Srivastava M.
Zhang X.
J.
Org. Chem.
2002,
67:
1969
5c
Fairlamb IJS.
Bäuerlein PS.
Marrison LR.
Dickinson JM.
Chem. Commun.
2003,
632
5d
Liao Y.
Fathi R.
Yang Z.
Org.
Lett.
2003,
5:
909
5e
Yadav JS.
Reddy BVS.
Reddy KB.
Gayathri KU.
Prasad AR.
Tetrahedron
Lett.
2003,
44:
6493
5f
Batsanov AS.
Collings JC.
Fairlamb IJS.
Holland JP.
Howard JAK.
Lin Z.
Marder TB.
Parsons AC.
Ward RM.
Zhu J.
J. Org. Chem.
2005,
70:
703
5g
Li J.-H.
Liang Y.
Zhang X.-D.
Tetrahedron
2005,
61:
1903
5h
Li J.-H.
Liang Y.
Xie Y.-X.
J.
Org. Chem.
2005,
70:
4393
5i
Jiang H.-F.
Tang J.-Y.
Wang A.-Z.
Deng G.-H.
Yang S.-R.
Synthesis
2006,
1155
5j
Shi M.
Qian H.-X.
Appl. Organomet. Chem.
2006,
20:
771
5k
Zhu BC.
Jiang XZ.
Appl. Organomet. Chem.
2007,
21:
345
5l
Yan J.
Lin F.
Yang Z.
Synthesis
2007,
1301
5m
Yan F.
Cui X.
Li Y.-N.
Zhang J.
Ren G.-R.
Wu Y.
Tetrahedron
2007,
63:
1963
5n
Kurita T.
Abe M.
Maegawa T.
Monguchi Y.
Sajiki H.
Synlett
2007,
2521
5o
Yan J.
Wu J.
Jin H.
J.
Organomet. Chem.
2007,
692:
3636
5p
Kamata K.
Yamaguchi S.
Kotani M.
Yamaguchi K.
Mizuno N.
Angew.
Chem. Int. Ed.
2008,
47:
2407
5q
Li D.
Yin K.
Li J.
Jia X.
Tetrahedron Lett.
2008,
49:
5918
5r
Chen S.-N.
Wu W.-Y.
Tsai F.-Y.
Green
Chem.
2009,
11:
269
5s
Kuhn P.
Alix A.
Kumarraja M.
Louis B.
Pale P.
Sommer J.
Eur. J. Org. Chem.
2009,
423
5t
Hilt G.
Hengst C.
Arndt M.
Synthesis
2009,
395
5u
Li L.
Wang J.
Zhang G.
Liu Q.
Tetrahedron Lett.
2009,
50:
4033
5v
Oishi T.
Katayama T.
Yamaguchi K.
Mizuno N.
Chem. Eur. J.
2009,
15:
7539
5w
Adimurthy S.
Malakar CC.
Beifuss U.
J.
Org. Chem.
2009,
74:
5648
5x
Chassaaing S.
Alix A.
Boningari T.
Sani Souna Sido K.
Keller M.
Kuhn P.
Louis B.
Sommer J.
Pale P.
Synthesis
2010,
1557
5y
Balaraman K.
Kesavan V.
Synthesis
2010,
3461
6a
Damle SV.
Seomoon D.
Lee PH.
J. Org. Chem.
2003,
68:
7085
6b
Chen Z.
Jiang H.
Wang A.
Yang S.
J. Org. Chem.
2010,
75:
6700
7a
Ikegashira K.
Nishihara Y.
Hirabayashi K.
Mori A.
Hiyama T.
Chem. Commun.
1997,
1039
7b
Ishikawa T.
Ogawa A.
Hirao T.
Organometallics
1998,
17:
5713
7c
Nishihara Y.
Ikegashira K.
Hirabayashi K.
Ando J.
Mori A.
Hiyama T.
J. Org. Chem.
2000,
65:
1780
7d
Bharathi P.
Periasamy M.
Organometallics
2000,
19:
5511
7e
Shirakawa E.
Nakao Y.
Murota Y.
Hiyama T.
J. Organomet. Chem.
2003,
670:
132
7f
Yoshida H.
Yamaryo Y.
Ohshita J.
Kunai A.
Chem. Commun.
2003,
1510
7g
Oh CH.
Reddy VR.
Tetrahedron Lett.
2004,
45:
5221
7h
Nishihara Y.
Okamoto M.
Inoue Y.
Miyazaki M.
Miyasaka M.
Takagi K.
Tetrahedron Lett.
2005,
46:
8661
7i
Krasovskiy A.
Tishkov A.
del Amo V.
Mayr H.
Knochel P.
Angew.
Chem. Int. Ed.
2006,
45:
5010
7j
Cahiez G.
Moyeux A.
Buendia J.
Duplais C.
J. Am. Chem. Soc.
2007,
129:
13788
7k
Paixão MW.
Weber M.
Braga AL.
de Azeredo JB.
Deobald AM.
Stefani HA.
Tetrahedron Lett.
2008,
49:
2366
7l
Maji MS.
Pfeifer T.
Studer A.
Angew. Chem. Int. Ed.
2008,
47:
9547
7m
Singh FV.
Amaral MFZJ.
Stefani HA.
Tetrahedron Lett.
2009,
50:
2636
8
Cadiot P.
Chodkiewicz W. In Chemistry
of Acetylenes
Viehe HG.
Dekker;
New
York:
1969.
p.597
9a
Wityak J.
Chan JB.
Synth.
Commun.
1991,
21:
977
9b
Cai C.
Vasella A.
Helv. Chim. Acta
1995,
78:
2053
9c
Alami M.
Ferri F.
Tetrahedron Lett.
1996,
37:
2763
9d
Barbu E.
Tsibouklis J.
Tetrahedron Lett.
1996,
37:
5023
9e
Montierth JM.
DeMario DR.
Kurth MJ.
Schore NE.
Tetrahedron
1998,
54:
11741
9f
Marino JP.
Nguyen HN.
J.
Org. Chem.
2002,
67:
6841
9g
Jiang H.-F.
Wang A.-Z.
Synthesis
2007,
1649
10a
Nye SA.
Potts KT.
Synthesis
1988,
375
10b
Balova IA.
Morozkina SN.
Knight DW.
Vasilevsky SF.
Tetrahedron
Lett.
2003,
44:
107
10c
Fiandanese V.
Bottalico D.
Marchese G.
Punzi A.
Tetrahedron Lett.
2003,
44:
9087
10d
Liang Y.
Tao L.-M.
Zhang Y.-H.
Li J.-H.
Synthesis
2008,
3988
11a
Kwon JH.
Lee ST.
Shim SC.
Hoshino M.
J.
Org. Chem.
1994,
59:
1108
11b
Alami M.
Crousse B.
Linstrumelle G.
Tetrahedron
Lett.
1995,
36:
3687
11c
Negishi E.
Hata M.
Xu C.
Org.
Lett.
2000,
2:
3687
12a
Ziegler CB.
Harris SM.
Baldwin JE.
J.
Org. Chem.
1987,
52:
443
12b
Nishihara Y.
Ikegashira K.
Mori A.
Hiyama T.
Tetrahedron Lett.
1998,
39:
4075
12c
Shen W.
Thomas SA.
Org. Lett.
2000,
2:
2857
12d
Shin Shun ALK.
Chernick ET.
Eisler S.
Tykwinski RR.
J.
Org. Chem.
2003,
68:
1339
12e
Yin W.
He C.
Chen M.
Zhang H.
Lei A.
Org. Lett.
2009,
11:
709
12f
Coste A.
Couty F.
Evano G.
Synthesis
2010,
1500
13a
Hoshi M.
Nakayabu H.
Shirakawa K.
Synthesis
2005,
1991
13b
Hoshi M.
Suzuki S.
Saitoh S.
Okimoto M.
Shirakawa K.
Tetrahedron
Lett.
2007,
48:
119
13c
Hoshi M.
Iizawa T.
Okimoto M.
Shirakawa K.
Synthesis
2008,
3591
13d
Hoshi M.
Yamazaki H.
Okimoto M.
Synlett
2010,
2461
14a
Hoshi M.
Shirakawa K.
Synlett
2002,
1101
14b
Hoshi M.
Kawamura N.
Shirakawa K.
Synthesis
2006,
1961
15 Compound 2a was
formed in about 75% GC yield based on Me3 SiCºCBr
used; unpublished results.
16 In the original procedure ethyl bromoacetate
was used as the oxidant.
17
Negishi E.
Williams RM.
Lew G.
Yoshida T.
J. Organomet. Chem.
1975,
92:
C4
18 Compounds 5a and 5b were formed in 72-75% GC
yield based on Me3 SiCºCBr used; unpublished results.
19
Hofmeister H.
Annen K.
Laurent H.
Wiechert R.
Angew. Chem., Int. Ed. Engl.
1984,
23:
727
20
Southwick PL.
Kirchiner JR.
J. Org. Chem.
1962,
27:
3305
21
Schulte KE.
Goes M.
Arch. Pharm. (Weinheim, Ger.)
1959,
290:
118
22a
Zweifel G.
Brown HC.
Org.
React.
1963,
13:
1
22b
Brown HC.
Organic Syntheses via
Boranes
Wiley-Interscience;
New
York:
1975.