References and Notes
<A NAME="RU05511ST-1">1</A>
Present address: Research Core for
Interdisciplinary Sciences, Okayama University, Tsushima, Kita-ku, Okayama
700-8530, Japan.
<A NAME="RU05511ST-2A">2a</A>
Comprehensive Organometallic Chemistry II
Vol.
3:
Abel EW.
Stone FGA.
Wilkinson G.
Elsevier;
Oxford
(U.K.):
1995.
<A NAME="RU05511ST-2B">2b</A>
Comprehensive
Organometallic Chemistry II
Vol. 4:
Abel EW.
Stone FGA.
Wilkinson G.
Elsevier;
Oxford
(U.K.):
1995.
<A NAME="RU05511ST-2C">2c</A>
Comprehensive
Organometallic Chemistry II
Vol. 5:
Abel EW.
Stone FGA.
Wilkinson G.
Elsevier;
Oxford
(U.K.):
1995.
<A NAME="RU05511ST-2D">2d</A>
Comprehensive
Organometallic Chemistry II
Vol. 6:
Abel EW.
Stone FGA.
Wilkinson G.
Elsevier;
Oxford
(U.K.):
1995.
<A NAME="RU05511ST-2E">2e</A>
Comprehensive
Organometallic Chemistry II
Vol. 7:
Abel EW.
Stone FGA.
Wilkinson G.
Elsevier;
Oxford
(U.K.):
1995.
<A NAME="RU05511ST-2F">2f</A>
Comprehensive
Organometallic Chemistry II
Vol. 8:
Abel EW.
Stone FGA.
Wilkinson G.
Elsevier;
Oxford
(U.K.):
1995.
<A NAME="RU05511ST-2G">2g</A>
Comprehensive
Organometallic Chemistry II
Vol. 9:
Abel EW.
Stone FGA.
Wilkinson G.
Elsevier;
Oxford
(U.K.):
1995.
<A NAME="RU05511ST-2H">2h</A>
McKnight AL.
Waymouth RM.
Chem.
Rev.
1998,
98:
2587
<A NAME="RU05511ST-2I">2i</A>
Arndt S.
Okuda J.
Chem. Rev.
2002,
102:
1953
<A NAME="RU05511ST-2J">2j</A>
Deck PA.
Coord. Chem. Rev.
2006,
250:
1032
There are several examples of applications
for electroluminescence devices. See:
<A NAME="RU05511ST-3A">3a</A>
Adachi C.
Tsutsui T.
Saito S.
Appl.
Phys. Lett.
1990,
56:
799
<A NAME="RU05511ST-3B">3b</A>
Ohmori Y.
Tada N.
Fujii A.
Ueta H.
Sawatani T.
Yoshino K.
Thin Solid Films
1998,
331:
89
<A NAME="RU05511ST-3C">3c</A>
Sugiyama K.
Yoshimura D.
Miyamae T.
Miyazaki T.
Ishii H.
Ouchi Y.
Seki K.
J.
Appl. Phys.
1998,
83:
4928
<A NAME="RU05511ST-3D">3d</A>
Zhao YS.
Fu H.
Hu F.
Peng AD.
Yao J.
Adv.
Mater.
2007,
19:
3554
<A NAME="RU05511ST-4A">4a</A>
Chambers JW.
Baskar AJ.
Bott SG.
Atwood
JL.
Rausch MD.
Organometallics
1986,
5:
1635
<A NAME="RU05511ST-4B">4b</A>
Burk MJ.
Calabrese JC.
Davidson F.
Harlow
RL.
Roe DC.
J. Am. Chem. Soc.
1991,
113:
2209
<A NAME="RU05511ST-4C">4c</A>
Martín-Matute B.
Edin M.
Bogár K.
Kaynak FB.
Bäckvall J.-E.
J. Am. Chem. Soc.
2005,
127:
8817
<A NAME="RU05511ST-4D">4d</A>
Mavrynsky D.
Päiviö M.
Lundell K.
Sillanpää R.
Kanerva LT.
Leino R.
Eur.
J. Org. Chem.
2009,
1317
<A NAME="RU05511ST-5">5</A>
Kohl FX.
Jutzi P.
J. Organomet. Chem.
1983,
243:
119
<A NAME="RU05511ST-6">6</A> There has been a report on zirconium-catalyzed
synthesis of cyclopentenones from ketones and aldehydes
and its application to the preparation of cyclopentadienes. See:
Yuki T.
Hashimoto M.
Nishiyama Y.
Ishii Y.
J.
Org. Chem.
1993,
58:
4497
For reviews of Nazarov reactions,
see:
<A NAME="RU05511ST-7A">7a</A>
Santelli-Rouvier C.
Santelli M.
Synthesis
1983,
429
<A NAME="RU05511ST-7B">7b</A>
Pellissier H.
Tetrahedron
2005,
61:
6479
<A NAME="RU05511ST-7C">7c</A>
There have been many reports
on reactions catalyzed by a rhenium complex as a Lewis acid; however,
examples of rhenium-catalyzed Nazarov reactions are still rare.
<A NAME="RU05511ST-8">8</A> Rhenium carbonyl complexes exhibit
Lewis acidity. See:
Kuninobu Y.
Takai K.
Chem. Rev.
2011,
111:
1938
<A NAME="RU05511ST-9">9</A>
For investigation of several catalysts:
Sc(OTf)3 (5.0 mol%, 150 ˚C, 24 h),
12%; TiCl4(thf)2 (10 mol%,
120 ˚C, 16 h), 80%; ZrOCl2˙8H2O
(10 mol%, 150 ˚C, 12 h), 63%; AuCl3 (5.0
mol%, 150 ˚C, 24 h), 4%. No reaction
(5.0 mol%, 150 ˚C, 24 h): InCl3, In(OTf)3,
and Cu(OTf)2. These results were obtained within the
scope of this work.
<A NAME="RU05511ST-10">10</A> There has been a report on titanium-catalyzed
synthesis of cyclopentenones from ketones and aldehydes. See:
Tao X.
Liu R.
Meng Q.
Zhao Y.
Zhou Y.
Huang J.
J. Mol. Cat. A: Chem.
2005,
225:
239
<A NAME="RU05511ST-11">11</A> Rhenium carbonyl complexes function
as mild Lewis acids, which do not decompose α,β-unsaturated
carbonyl compounds. The reactivities are maintained even in the presence
of water. See:
Kuninobu Y.
Ueda H.
Takai K.
Chem. Lett.
2008,
37:
878
<A NAME="RU05511ST-12">12</A>
Self-aldol condensation of acetaldehyde
(2b) also proceeded as a side reaction.
<A NAME="RU05511ST-13">13</A>
Arnold A.
Markert M.
Mahrwald R.
Synthesis
2006,
1099
<A NAME="RU05511ST-14A">14a</A>
Walz I.
Togni A.
Chem.
Commun.
2008,
4315
<A NAME="RU05511ST-14B">14b</A>
Wu YK.
West FG.
J. Org. Chem.
2010,
75:
5410
<A NAME="RU05511ST-14C">14c</A>
Yaji K.
Shindo M.
Tetrahedron Lett.
2010,
51:
5469
<A NAME="RU05511ST-15">15</A>
When the reaction was quenched with
aq HCl, the yield of 5a decreased. See:
ref 5.
<A NAME="RU05511ST-16">16</A>
The yield of 5a was
low because deprotonation of 3b with 1a occurred predominantly. When the reaction
was quenched with D2O, deuterium was incorporated at
the α-position of the carbonyl group of 3b.
<A NAME="RU05511ST-17">17</A> The magnesium ate complex can undergo
selective addition to the carbonyl group. See:
Hatano M.
Matsumura T.
Ishihara K.
Org.
Lett.
2005,
7:
573
<A NAME="RU05511ST-18">18</A>
Chloroform was used as a proton source.
When a catalytic amount of p-toluenesulfonic
acid was used in the dehydration, the yield of cyclopentadiene 5b decreased.
Monoselective aldol reaction has
been limited to a few examples. See:
<A NAME="RU05511ST-19A">19a</A>
Iranpoor N.
Kazemi F.
Tetrahedron
1998,
54:
9475
<A NAME="RU05511ST-19B">19b</A>
Cao YQ.
Dai Z.
Zhang R.
Chen
BH.
Synth. Commun.
2005,
35:
1045
<A NAME="RU05511ST-20">20</A>
The regioisomers of 5i could
not be separated by column chromatography on silica gel or GPC.
The ratio between five regioisomers of 5i was
determined by ¹H NMR.
<A NAME="RU05511ST-21A">21a</A>
Koschinsky R.
Köhli TP.
Mayr H.
Tetrahedron
Lett.
1988,
29:
5641
<A NAME="RU05511ST-21B">21b</A>
Batz C.
Jutzi P.
Synthesis
1996,
1296
<A NAME="RU05511ST-21C">21c</A>
Lee JH.
Toste FD.
Angew.
Chem. Int. Ed.
2007,
46:
912
<A NAME="RU05511ST-22">22</A>
General Procedure
for the Synthesis of Cyclopentenones 3: A mixture of ketone 1 (0.250 mmol), aldehyde 2 (0.500 mmol),
Re2(CO)10 (8.2 mg, 0.0125 mmol), and toluene
(0.1 mL) was stirred at 150 ˚C for 24 h in a sealed tube.
Then, the solvent was removed in vacuo and the product was isolated by
column chromatography on silica gel (hexane-EtOAc = 20:1)
to give cyclopentenone 3.
<A NAME="RU05511ST-23">23</A>
2,5-Dimethyl-3,4-diphenyl-2-cyclopentene-1-one
(3a): ¹H NMR (400 MHz, CDCl3): δ = 1.25
(d, J = 7.2 Hz, 3 H), 1.93 (d, J = 1.6 Hz, 3 H), 2.31 (qd, J = 7.2, 2.8 Hz, 1 H), 3.89
(s, 1 H), 6.97-7.23 (m, 10 H). ¹³C
NMR (100 MHz, CDCl3):
δ = 10.1,
15.2, 51.2, 56.2, 126.5, 127.4, 128.2, 128.6, 128.8, 135.0, 136.6,
136.8, 141.9, 166.9, 210.8.
<A NAME="RU05511ST-24">24</A>
General Procedure
for the Synthesis of Cyclopentadienes 5: To a mixture of cyclopentenone 3 (0.25 mmol) and THF (5.0 mL), an Et2O
solution of organolithium reagent 4 (0.275 mmol,
1.1 equiv) was added dropwise at -78 ˚C. Then
the reaction mixture was stirred at -78 ˚C for
3 h. The reaction was quenched with aq NH4Cl (3.0 mL),
and the mixture was extracted with EtOAc. The organic layer was
dried with MgSO4, filtered, and concentrated in vacuo.
CH2Cl2 (1.0 mL) and TsOH (5.2 mg, 0.0125 mmol,
0.050 equiv) were added to the mixture, and the mixture was stirred
at 25 ˚C for 1 h. Then, the solvent was removed in vacuo
and the product was isolated by column chromatography on silica
gel (hexane-EtOAc = 50:1) to give cyclopentadiene 5.
<A NAME="RU05511ST-25">25</A>
1,2,3,4,5-Pentaphenylcyclopentadiene
(5a): ¹H NMR (400 MHz, CDCl3): δ = 5.08
(s, 1 H), 6.94-6.98 (m, 4 H), 7.00-7.03 (m, 8
H), 7.08-7.22 (m, 13 H). ¹³C
NMR (100 MHz, CDCl3): δ = 62.7, 126.3,
126.5, 126.7, 127.7, 127.8, 128.4, 128.5, 129.0, 130.1, 135.8, 136.1,
138.1, 144.0, 146.5.