Subscribe to RSS
DOI: 10.1055/s-0030-1260579
Synthesis of Highly Substituted Indoles via Diels-Alder/Plieninger Indolization Sequence: Applications in Total Synthesis
Publication History
Publication Date:
26 May 2011 (online)
Abstract
This account describes the development of a Diels-Alder-based methodology towards highly functionalized dihydronaphthalenamines, and their conversion into indoles through a modified Plieninger procedure. Applications towards the total synthesis of indole-containing natural products will be presented.
1 Introduction
2 Synthesis of Indoles via Diels-Alder Cycloadditions/Plieninger Indolization
2.1 High Pressure Diels-Alder Cycloadditions of Quinone Imine Ketals (QIKs)
2.2 Thermal Diels-Alder Cycloadditions of QIKs
2.3 Development of a Modified Plieninger Protocol
2.4 Diels-Alder Cycloadditions/Indolization of p-Benzoquinone Monoimines
3 Applications to Natural Products Synthesis
3.1 Ergot Alkaloids: Chanoclavine I (Plieninger)
3.2 Rivularins (Maehr)
3.3 Polyalkylated Indoles: Herbindoles and Trikentrins (Kerr)
3.4 Tremorgenic Indole Terpenoids: Lolicine Western Hemisphere (Kerr)
3.5 Antitumor Agents: Yatakemycin (Boger) and CC-1065 (Kraus, Kerr)
3.6 Antimalarials: Decursivine (Kerr)
3.7 Carbazole Natural Products: The Clausamines and Eustifolines (Kerr)
4 Summary and Outlook
Key words
cycloadditions - Diels-Alder reaction - indoles - natural products - total synthesis
- For recent reviews on the synthesis of indoles, see:
-
1a
Gribble GW. J. Chem. Soc., Perkin Trans. 1 2000, 1045 -
1b
Cacchi S.Fabrizi G. Chem. Rev. 2005, 105: 2873 -
1c
Humphrey GR.Kuethe JT. Chem. Rev. 2006, 106: 2875 -
2a
Gribble GW. In Comprehensive Heterocyclic Chemistry 2nd ed., Vol 2: Pergammon Press; New York: 1996. p.203-257 -
2b
Snieckus VA. In The Alkaloids Vol 11: Academic Press; New York: 1968. Chap. 1. - 3
Plieninger H.Suhr K.Werst G.Kiefer R. Chem. Ber. 1956, 89: 270-278 - 4
Adams R.Reifschneider W. Bull. Soc. Chem. Fr. 1956, 23 - 5
Rutolo D.Lee S.Sheldon R.Moore HW. J. Org. Chem. 1978, 43: 2304 - 6
Coutts IGC.Culbert NJ.Edwards M.Hadfield JA.Musto DR.Pavlidis VH.Richards DJ. J. Chem. Soc., Perkin Trans. 1 1985, 1829 -
7a
Swenton JS. Acc. Chem. Res. 1983, 16: 74 -
7b
Chen CP.Chou CT.Swenton JS. J. Am. Chem. Soc. 1987, 109: 946 -
7c
Swenton JS.Bonk BR.Chen C.-P. J. Org. Chem. 1989, 54: 51 ; and earlier studies cited within -
8a
Kerr MA. Synlett 1995, 1165 -
8b
Banfield SC.England DB.Kerr MA. Org. Lett. 2001, 3: 3325 -
8c
Banfield SC.Kerr MA. Can. J. Chem. 2004, 82: 131 -
9a
Jarvo ER.Boothroyd SR.Kerr MA. Synlett 1996, 897 - Select previous reports of quinone mono ketals as dienophiles:
-
9b
Carreno MC.Farina F.Galan A.Ruano JLG. J. Chem. Res. 1979, 296 -
9c
Carreno MC.Farina F.Galan A.Ruano JLG. J. Chem. Res. 1981, 370 - 10
Zawada PV.Banfield SC.Kerr MA. Synlett 2003, 971 - 11
Persons PE.Mayer JP.Nichols DE.Cassady JM.Smalstig EB.Clemens JA. Eur. J. Med. Chem. 1991, 26: 473 - 12
Pappo R.Allen DS.Lemieux RU.Johnson WS. J. Org. Chem. 1956, 21: 478 -
14a
Daumas M.Vo-Quang Y.Vo-Quang L.Le Goffic F. Synthesis 1989, 64 -
14b
Zhong Y.-L.Shing TKM. J. Org. Chem. 1997, 62: 2622 - 15
Banfield SC. Ph. D. Dissertation The University of Western Ontario, London; Canada: 2004. -
16a
Brown DW.Mahon MF.Ninan A.Sainsbury M. J. Chem. Soc., Perkin Trans. 1 1997, 2329 -
16b
Doss SH.Louca NA.Elmegeed GA.Mohareb RM. Arch. Pharm. Res. 1999, 22: 496 - 17
England DB.Kerr MA. J. Org. Chem. 2005, 70: 6519 -
18a
Plieninger H.Volkl A. Chem. Ber. 1976, 109: 2121 -
18b
Plieninger H.Schmalz D.Westphal J. Chem. Ber. 1976, 109: 2127 -
18c
Plieninger H.Schmalz D. Chem. Ber. 1976, 109: 2141 -
18d
Plieninger H.Lehnert W. Chem. Ber. 1967, 100: 2427 - 19
Banfield SC.Kerr MA. Synlett 2001, 436 - 20
Maehr H.Smallheer J. J. Am. Chem. Soc. 1985, 107: 2943 - 21
Herb R.Carroll AR.Yoshida WY.Scheuer PJ.Paul VJ. Tetrahedron 1990, 46: 3089 - 22
Capon RJ.Macleod JK.Scammells PJ. Tetrahedron 1986, 42: 6545 -
23a
Muratake H.Mikawa A.Seino T.Natsume M. Chem. Pharm. Bull. 1994, 42: 854 -
23b
Muratake H.Mikawa A.Seino T.Natsume M. Chem. Pharm. Bull. 1994, 42: 846 - 24
Buszek KR.Brown N.Luo D. Org. Lett. 2009, 11: 201 - Select examples:
-
25a
Macleod JK.Monaham LC. Tetrahedron Lett. 1988, 29: 391 -
25b
Blechert S.Wiedenau P.Monse B. Tetrahedron 1995, 51: 1167 -
25c
Boger DL.Zhang M. J. Am. Chem. Soc. 1991, 113: 4230 -
25d
Kanematsu K.Lee M.Ikeda I.Kawabe T.Mori S. J. Org. Chem. 1996, 61: 3406 - 26
Silva LF.Craveiro MV.Tébéka IRM. Tetrahedron 2010, 66: 3875 -
27a
Jackson SK.Banfield SC.Kerr MA. Org. Lett. 2005, 7: 1215 -
27b
Jackson SJ.Kerr MA. J. Org. Chem. 2007, 72: 1405 - 28
Fujimoto Y.Tatsuno T. Tetrahedron Lett. 1976, 17: 3325 - 29
Todd MH.Oliver SF.Abell C. Org. Lett. 1999, 1: 1149 -
30a
Munday-Finch SC.Wilkins AL.Miles CO. J. Agric. Food Chem. 1998, 46: 590 -
30b
Munday-Finch SC.Wilkins AL.Miles CO.Ede RM.Thomson RA. J. Agric. Food Chem. 1996, 44: 2782 -
30c
Harrison CA.Jackson PM.Moody CJ.Williams JMJ. J. Chem. Soc., Perkin Trans. 1 1995, 1131 -
31a
Wilson BJ.Wilson CH.Hayes AW. Nature 1968, 220: 77 -
31b
de Jesus AE.Steyn PS.van Heerden FR.Vleggar R.Wessels PL.Hull WE. J. Chem. Soc., Chem. Commun. 1981, 289 -
31c
Smith AB.Kanoh N.Ishiyama H.Minakawa N.Rainier JD.Hartz RA.Cho YS.Cui H.Moser WH. J. Am. Chem. Soc. 2003, 125: 8228 -
31d
Smith AB.Kanoh N.Ishiyama H.Hartz RA. J. Am. Chem. Soc. 2000, 122: 11254 -
31e
Smith AB.Kanoh N.Minakawa N.Rainier JD.Blase FR.Hartz RA. Org. Lett. 1999, 1: 1263 ; and earlier studies cited within -
31f
Rivkin A.Gonzalez-Lopez de Turiso F.Nagashima T.Curran DP. J. Org. Chem. 2004, 69: 3719 -
31g
Rivkin A.Nagashima T.Curran DP. Org. Lett. 2003, 5: 419 - 32
England DB.Magolan J.Kerr MA. Org. Lett. 2006, 8: 2209 - 33
Nicolaou KC.Lysenko Z. Tetrahedron Lett. 1977, 18: 1257 -
34a
Boger DL.Boyce CW.Garbaccio RM.Goldberg JA. Chem. Rev. 1997, 97: 787 -
34b
Martin DG.Kelly RC.Watt W.Wicnienski N.Mizsak SA.Nielsen JW.Prairie MD. J. Org. Chem. 1988, 53: 4610 -
35a
Tichenor MS.Kastrinsky DB.Boger DL. J. Am. Chem. Soc. 2004, 126: 8396 -
35b
Tichenor MS.Trzupek JD.Kastrinsky DB.Shiga F.Hwang I.Boger DL. J. Am. Chem. Soc. 2006, 128: 15683 -
35c
Okano K.Tokuyama H.Fukuyama T. J. Am. Chem. Soc. 2006, 128: 7136 - 36
Kraus GA.Yue S.Sy J. J. Org. Chem. 1985, 50: 283 - 37
Ganton MD.Kerr MA. J. Org. Chem. 2007, 72: 574 - 38
Zhang H.Qiu S.Tamez P.Tan GT.Aydogmus Z.Hung NV.Cuong NM.Angerhofer C.Doel Soejarto D.Pezzuto JM.Fong HHS. Pharm. Biol. 2002, 40: 221 - 39
Leduc AB.Kerr MA. Eur. J. Org. Chem. 2007, 237 - For recent reviews on the synthesis of carbazoles, see:
-
40a
Knölker H.-J.Reddy KR. In The Alkaloids Vol. 65: Academic Press; New York: 2008. -
40b
Knölker H.-J.Reddy KR. Chem. Rev. 2002, 102: 4303 -
41a
Kumar V.Reisch J.Wickramasinghe A. Aust. J. Chem. 1989, 42: 1375 -
41b
Ito C.Furukawa H. Chem. Pharm. Bull. 1990, 38: 1548 -
41c
Forke R.Krahl MP.Krause T.Schlechtingen G.Knö lker H.-J. Synlett 2007, 268 -
41d
Ito C.Itoigawa M.Sato A.Hasan CM.Rashid MA.Tokuda H.Mukainaka T.Nishino H.Furukawa H. J. Nat. Prod. 2004, 67: 1488 -
41e
Pacher T.Bacher M.Hofer O.Greger H. Phytochemistry 2001, 58: 129 -
41f
Wang J.Zheng Y.Efferth T.Wang R.Shen Y.Hao X. Phytochemistry 2005, 66: 697 - 42
Lebold TP.Kerr MA. Org. Lett. 2007, 9: 1883 - 43
Koh JH.Mascarenhas C.Gagne MR. Tetrahedron 2004, 60: 7405 -
44a
Ito C.Katsuno S.Ruangrungsi N.Furukawa H. Chem. Pharm. Bull. 1998, 46: 344 -
44b
Wu T.-S.Huang S.-C.Wu P.-L. Chem. Pharm. Bull. 1998, 46: 1459 -
44c
Ito C.Itoigawa M.Aizawa K.Yoshida K.Ruangrungsi N.Furukawa H. J. Nat. Prod. 2009, 72: 1202 -
44d
Jana AK.Mal D. Chem. Commun. 2010, 46: 4411 - 45
Lebold TP.Kerr MA. Org. Lett. 2008, 10: 997 - 46
Rodriguez J.Brun P.Waegell B. J. Organomet. Chem. 1989, 359: 343 - A slight improvement to 55% ee could be obtained if the reaction was carried out at 0 ˚C; however, the significant increase in reaction time was not justified by the modest increase in ee and as such the reaction was carried out at room temperature. For asymmetric dihydroxylation (AD-mix-β) of similar substrates resulting in the formation of the (R) alcohol, see:
-
47a
Sharma R.Bulger PG.McNevin M.Dormer PG.Ball RG.Streckfuss E.Cuff JF.Yin J.Cheng C. Org. Lett. 2009, 11: 3194 -
47b
Kaur N.Xia Y.Jin Y.Dat NT.Gajulapati K.Choi Y.Hong Y.-S.Lee JJ.Lee K. Chem. Commun. 2009, 1879 - For asymmetric dihydroxylation (AD-mix-α) of similar substrates resulting in the formation of the (S) alcohol, see:
-
47c
Jiang H.Hamada Y. Org. Biomol. Chem. 2009, 4173 ; and reference 47b - 48
Arhart RJ.Martin JC. J. Am. Chem. Soc. 1972, 94: 5003
References
Although not isolated in practice, the crude diol and dicarbonyl species were characterized in one case to confirm that these were, in fact, synthetic intermediates.