Synlett 2011(11): 1495-1514  
DOI: 10.1055/s-0030-1260579
ACCOUNT
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of Highly Substituted Indoles via Diels-Alder/Plieninger Indolization Sequence: Applications in Total Synthesis

Katarina Sapeta, Terry P. Lebold, Michael A. Kerr*
Department of Chemistry, The University of Western Ontario, London, ON, N6A 5B7, Canada
Fax: +1(510)6613022; e-Mail: makerr@uwo.ca;
Further Information

Publication History

Received 18 February 2011
Publication Date:
26 May 2011 (online)

Abstract

This account describes the development of a Diels-­Alder-based methodology towards highly functionalized dihydronaphthalenamines, and their conversion into indoles through a modified Plieninger procedure. Applications towards the total synthesis of indole-containing natural products will be presented.

1 Introduction

2 Synthesis of Indoles via Diels-Alder Cycloadditions/­Plieninger Indolization

2.1 High Pressure Diels-Alder Cycloadditions of Quinone ­Imine Ketals (QIKs)

2.2 Thermal Diels-Alder Cycloadditions of QIKs

2.3 Development of a Modified Plieninger Protocol

2.4 Diels-Alder Cycloadditions/Indolization of p-Benzoquin­one Monoimines

3 Applications to Natural Products Synthesis

3.1 Ergot Alkaloids: Chanoclavine I (Plieninger)

3.2 Rivularins (Maehr)

3.3 Polyalkylated Indoles: Herbindoles and Trikentrins (Kerr)

3.4 Tremorgenic Indole Terpenoids: Lolicine Western Hemisphere (Kerr)

3.5 Antitumor Agents: Yatakemycin (Boger) and CC-1065 (Kraus, Kerr)

3.6 Antimalarials: Decursivine (Kerr)

3.7 Carbazole Natural Products: The Clausamines and Eustifolines (Kerr)

4 Summary and Outlook

    References

  • For recent reviews on the synthesis of indoles, see:
  • 1a Gribble GW. J. Chem. Soc., Perkin Trans. 1  2000,  1045 
  • 1b Cacchi S. Fabrizi G. Chem. Rev.  2005,  105:  2873 
  • 1c Humphrey GR. Kuethe JT. Chem. Rev.  2006,  106:  2875 
  • 2a Gribble GW. In Comprehensive Heterocyclic Chemistry   2nd ed., Vol 2:  Pergammon Press; New York: 1996.  p.203-257  
  • 2b Snieckus VA. In The Alkaloids   Vol 11:  Academic Press; New York: 1968.  Chap. 1.
  • 3 Plieninger H. Suhr K. Werst G. Kiefer R. Chem. Ber.  1956,  89:  270-278  
  • 4 Adams R. Reifschneider W. Bull. Soc. Chem. Fr.  1956,  23 
  • 5 Rutolo D. Lee S. Sheldon R. Moore HW. J. Org. Chem.  1978,  43:  2304 
  • 6 Coutts IGC. Culbert NJ. Edwards M. Hadfield JA. Musto DR. Pavlidis VH. Richards DJ. J. Chem. Soc., Perkin Trans. 1  1985,  1829 
  • 7a Swenton JS. Acc. Chem. Res.  1983,  16:  74 
  • 7b Chen CP. Chou CT. Swenton JS. J. Am. Chem. Soc.  1987,  109:  946 
  • 7c Swenton JS. Bonk BR. Chen C.-P. J. Org. Chem.  1989,  54:  51 ; and earlier studies cited within
  • 8a Kerr MA. Synlett  1995,  1165 
  • 8b Banfield SC. England DB. Kerr MA. Org. Lett.  2001,  3:  3325 
  • 8c Banfield SC. Kerr MA. Can. J. Chem.  2004,  82:  131 
  • 9a Jarvo ER. Boothroyd SR. Kerr MA. Synlett  1996,  897 
  • Select previous reports of quinone mono ketals as dienophiles:
  • 9b Carreno MC. Farina F. Galan A. Ruano JLG. J. Chem. Res.  1979,  296 
  • 9c Carreno MC. Farina F. Galan A. Ruano JLG. J. Chem. Res.  1981,  370 
  • 10 Zawada PV. Banfield SC. Kerr MA. Synlett  2003,  971 
  • 11 Persons PE. Mayer JP. Nichols DE. Cassady JM. Smalstig EB. Clemens JA. Eur. J. Med. Chem.  1991,  26:  473 
  • 12 Pappo R. Allen DS. Lemieux RU. Johnson WS. J. Org. Chem.  1956,  21:  478 
  • 14a Daumas M. Vo-Quang Y. Vo-Quang L. Le Goffic F. Synthesis  1989,  64 
  • 14b Zhong Y.-L. Shing TKM. J. Org. Chem.  1997,  62:  2622 
  • 15 Banfield SC. Ph. D. Dissertation   The University of Western Ontario, London; Canada: 2004. 
  • 16a Brown DW. Mahon MF. Ninan A. Sainsbury M. J. Chem. Soc., Perkin Trans. 1  1997,  2329 
  • 16b Doss SH. Louca NA. Elmegeed GA. Mohareb RM. Arch. Pharm. Res.  1999,  22:  496 
  • 17 England DB. Kerr MA. J. Org. Chem.  2005,  70:  6519 
  • 18a Plieninger H. Volkl A. Chem. Ber.  1976,  109:  2121 
  • 18b Plieninger H. Schmalz D. Westphal J. Chem. Ber.  1976,  109:  2127 
  • 18c Plieninger H. Schmalz D. Chem. Ber.  1976,  109:  2141 
  • 18d Plieninger H. Lehnert W. Chem. Ber.  1967,  100:  2427 
  • 19 Banfield SC. Kerr MA. Synlett  2001,  436 
  • 20 Maehr H. Smallheer J. J. Am. Chem. Soc.  1985,  107:  2943 
  • 21 Herb R. Carroll AR. Yoshida WY. Scheuer PJ. Paul VJ. Tetrahedron  1990,  46:  3089 
  • 22 Capon RJ. Macleod JK. Scammells PJ. Tetrahedron  1986,  42:  6545 
  • 23a Muratake H. Mikawa A. Seino T. Natsume M. Chem. Pharm. Bull.  1994,  42:  854 
  • 23b Muratake H. Mikawa A. Seino T. Natsume M. Chem. Pharm. Bull.  1994,  42:  846 
  • 24 Buszek KR. Brown N. Luo D. Org. Lett.  2009,  11:  201 
  • Select examples:
  • 25a Macleod JK. Monaham LC. Tetrahedron Lett.  1988,  29:  391 
  • 25b Blechert S. Wiedenau P. Monse B. Tetrahedron  1995,  51:  1167 
  • 25c Boger DL. Zhang M. J. Am. Chem. Soc.  1991,  113:  4230 
  • 25d Kanematsu K. Lee M. Ikeda I. Kawabe T. Mori S. J. Org. Chem.  1996,  61:  3406 
  • 26 Silva LF. Craveiro MV. Tébéka IRM. Tetrahedron  2010,  66:  3875 
  • 27a Jackson SK. Banfield SC. Kerr MA. Org. Lett.  2005,  7:  1215 
  • 27b Jackson SJ. Kerr MA. J. Org. Chem.  2007,  72:  1405 
  • 28 Fujimoto Y. Tatsuno T. Tetrahedron Lett.  1976,  17:  3325 
  • 29 Todd MH. Oliver SF. Abell C. Org. Lett.  1999,  1:  1149 
  • 30a Munday-Finch SC. Wilkins AL. Miles CO. J. Agric. Food Chem.  1998,  46:  590 
  • 30b Munday-Finch SC. Wilkins AL. Miles CO. Ede RM. Thomson RA. J. Agric. Food Chem.  1996,  44:  2782 
  • 30c Harrison CA. Jackson PM. Moody CJ. Williams JMJ. J. Chem. Soc., Perkin Trans. 1  1995,  1131 
  • 31a Wilson BJ. Wilson CH. Hayes AW. Nature  1968,  220:  77 
  • 31b de Jesus AE. Steyn PS. van Heerden FR. Vleggar R. Wessels PL. Hull WE. J. Chem. Soc., Chem. Commun.  1981,  289 
  • 31c Smith AB. Kanoh N. Ishiyama H. Minakawa N. Rainier JD. Hartz RA. Cho YS. Cui H. Moser WH. J. Am. Chem. Soc.  2003,  125:  8228 
  • 31d Smith AB. Kanoh N. Ishiyama H. Hartz RA. J. Am. Chem. Soc.  2000,  122:  11254 
  • 31e Smith AB. Kanoh N. Minakawa N. Rainier JD. Blase FR. Hartz RA. Org. Lett.  1999,  1:  1263 ; and earlier studies cited within
  • 31f Rivkin A. Gonzalez-Lopez de Turiso F. Nagashima T. Curran DP. J. Org. Chem.  2004,  69:  3719 
  • 31g Rivkin A. Nagashima T. Curran DP. Org. Lett.  2003,  5:  419 
  • 32 England DB. Magolan J. Kerr MA. Org. Lett.  2006,  8:  2209 
  • 33 Nicolaou KC. Lysenko Z. Tetrahedron Lett.  1977,  18:  1257 
  • 34a Boger DL. Boyce CW. Garbaccio RM. Goldberg JA. Chem. Rev.  1997,  97:  787 
  • 34b Martin DG. Kelly RC. Watt W. Wicnienski N. Mizsak SA. Nielsen JW. Prairie MD. J. Org. Chem.  1988,  53:  4610 
  • 35a Tichenor MS. Kastrinsky DB. Boger DL. J. Am. Chem. Soc.  2004,  126:  8396 
  • 35b Tichenor MS. Trzupek JD. Kastrinsky DB. Shiga F. Hwang I. Boger DL. J. Am. Chem. Soc.  2006,  128:  15683 
  • 35c Okano K. Tokuyama H. Fukuyama T. J. Am. Chem. Soc.  2006,  128:  7136 
  • 36 Kraus GA. Yue S. Sy J. J. Org. Chem.  1985,  50:  283 
  • 37 Ganton MD. Kerr MA. J. Org. Chem.  2007,  72:  574 
  • 38 Zhang H. Qiu S. Tamez P. Tan GT. Aydogmus Z. Hung NV. Cuong NM. Angerhofer C. Doel Soejarto D. Pezzuto JM. Fong HHS. Pharm. Biol.  2002,  40:  221 
  • 39 Leduc AB. Kerr MA. Eur. J. Org. Chem.  2007,  237 
  • For recent reviews on the synthesis of carbazoles, see:
  • 40a Knölker H.-J. Reddy KR. In The Alkaloids   Vol. 65:  Academic Press; New York: 2008. 
  • 40b Knölker H.-J. Reddy KR. Chem. Rev.  2002,  102:  4303 
  • 41a Kumar V. Reisch J. Wickramasinghe A. Aust. J. Chem.  1989,  42:  1375 
  • 41b Ito C. Furukawa H. Chem. Pharm. Bull.  1990,  38:  1548 
  • 41c Forke R. Krahl MP. Krause T. Schlechtingen G. Knö lker H.-J. Synlett  2007,  268 
  • 41d Ito C. Itoigawa M. Sato A. Hasan CM. Rashid MA. Tokuda H. Mukainaka T. Nishino H. Furukawa H. J. Nat. Prod.  2004,  67:  1488 
  • 41e Pacher T. Bacher M. Hofer O. Greger H. Phytochemistry  2001,  58:  129 
  • 41f Wang J. Zheng Y. Efferth T. Wang R. Shen Y. Hao X. Phytochemistry  2005,  66:  697 
  • 42 Lebold TP. Kerr MA. Org. Lett.  2007,  9:  1883 
  • 43 Koh JH. Mascarenhas C. Gagne MR. Tetrahedron  2004,  60:  7405 
  • 44a Ito C. Katsuno S. Ruangrungsi N. Furukawa H. Chem. Pharm. Bull.  1998,  46:  344 
  • 44b Wu T.-S. Huang S.-C. Wu P.-L. Chem. Pharm. Bull.  1998,  46:  1459 
  • 44c Ito C. Itoigawa M. Aizawa K. Yoshida K. Ruangrungsi N. Furukawa H. J. Nat. Prod.  2009,  72:  1202 
  • 44d Jana AK. Mal D. Chem. Commun.  2010,  46:  4411 
  • 45 Lebold TP. Kerr MA. Org. Lett.  2008,  10:  997 
  • 46 Rodriguez J. Brun P. Waegell B. J. Organomet. Chem.  1989,  359:  343 
  • A slight improvement to 55% ee could be obtained if the reaction was carried out at 0 ˚C; however, the significant increase in reaction time was not justified by the modest increase in ee and as such the reaction was carried out at room temperature. For asymmetric dihydroxylation (AD-mix-β) of similar substrates resulting in the formation of the (R) alcohol, see:
  • 47a Sharma R. Bulger PG. McNevin M. Dormer PG. Ball RG. Streckfuss E. Cuff JF. Yin J. Cheng C. Org. Lett.  2009,  11:  3194 
  • 47b Kaur N. Xia Y. Jin Y. Dat NT. Gajulapati K. Choi Y. Hong Y.-S. Lee JJ. Lee K. Chem. Commun.  2009,  1879 
  • For asymmetric dihydroxylation (AD-mix-α) of similar substrates resulting in the formation of the (S) alcohol, see:
  • 47c Jiang H. Hamada Y. Org. Biomol. Chem.  2009,  4173 ; and reference 47b
  • 48 Arhart RJ. Martin JC. J. Am. Chem. Soc.  1972,  94:  5003 
13

Although not isolated in practice, the crude diol and dicarbonyl species were characterized in one case to confirm that these were, in fact, synthetic intermediates.