Abstract
This account describes the development of a Diels-Alder-based
methodology towards highly functionalized dihydronaphthalenamines,
and their conversion into indoles through a modified Plieninger
procedure. Applications towards the total synthesis of indole-containing
natural products will be presented.
1 Introduction
2 Synthesis of Indoles via Diels-Alder Cycloadditions/Plieninger
Indolization
2.1 High Pressure Diels-Alder Cycloadditions of Quinone Imine
Ketals (QIKs)
2.2 Thermal Diels-Alder Cycloadditions of QIKs
2.3 Development of a Modified Plieninger Protocol
2.4 Diels-Alder Cycloadditions/Indolization
of p -Benzoquinone Monoimines
3 Applications to Natural Products Synthesis
3.1 Ergot Alkaloids: Chanoclavine I (Plieninger)
3.2 Rivularins (Maehr)
3.3 Polyalkylated Indoles: Herbindoles and Trikentrins (Kerr)
3.4 Tremorgenic Indole Terpenoids: Lolicine Western Hemisphere
(Kerr)
3.5 Antitumor Agents: Yatakemycin (Boger) and CC-1065 (Kraus,
Kerr)
3.6 Antimalarials: Decursivine (Kerr)
3.7 Carbazole Natural Products: The Clausamines and Eustifolines
(Kerr)
4 Summary and Outlook
Key words
cycloadditions - Diels-Alder reaction - indoles - natural products - total synthesis
References
For recent reviews on the synthesis
of indoles, see:
1a
Gribble GW.
J. Chem. Soc., Perkin Trans. 1
2000,
1045
1b
Cacchi S.
Fabrizi G.
Chem. Rev.
2005,
105:
2873
1c
Humphrey GR.
Kuethe JT.
Chem.
Rev.
2006,
106:
2875
2a
Gribble GW. In Comprehensive Heterocyclic Chemistry
2nd
ed., Vol 2:
Pergammon Press;
New York:
1996.
p.203-257
2b
Snieckus VA. In The Alkaloids
Vol 11:
Academic
Press;
New York:
1968.
Chap. 1.
3
Plieninger H.
Suhr K.
Werst G.
Kiefer R.
Chem. Ber.
1956,
89:
270-278
4
Adams R.
Reifschneider W.
Bull. Soc. Chem. Fr.
1956,
23
5
Rutolo D.
Lee S.
Sheldon R.
Moore HW.
J. Org. Chem.
1978,
43:
2304
6
Coutts IGC.
Culbert NJ.
Edwards M.
Hadfield JA.
Musto DR.
Pavlidis VH.
Richards DJ.
J. Chem. Soc., Perkin
Trans. 1
1985,
1829
7a
Swenton JS.
Acc. Chem. Res.
1983,
16:
74
7b
Chen CP.
Chou CT.
Swenton JS.
J. Am. Chem. Soc.
1987,
109:
946
7c
Swenton JS.
Bonk BR.
Chen C.-P.
J. Org. Chem.
1989,
54:
51 ; and earlier studies cited within
8a
Kerr MA.
Synlett
1995,
1165
8b
Banfield SC.
England DB.
Kerr MA.
Org. Lett.
2001,
3:
3325
8c
Banfield SC.
Kerr MA.
Can.
J. Chem.
2004,
82:
131
9a
Jarvo ER.
Boothroyd SR.
Kerr MA.
Synlett
1996,
897
Select previous reports of quinone mono ketals as dienophiles:
9b
Carreno MC.
Farina F.
Galan A.
Ruano JLG.
J. Chem.
Res.
1979,
296
9c
Carreno MC.
Farina F.
Galan A.
Ruano JLG.
J. Chem.
Res.
1981,
370
10
Zawada PV.
Banfield SC.
Kerr MA.
Synlett
2003,
971
11
Persons PE.
Mayer JP.
Nichols DE.
Cassady JM.
Smalstig EB.
Clemens JA.
Eur.
J. Med. Chem.
1991,
26:
473
12
Pappo R.
Allen DS.
Lemieux RU.
Johnson WS.
J.
Org. Chem.
1956,
21:
478
13 Although not isolated in practice,
the crude diol and dicarbonyl species were characterized in one
case to confirm that these were, in fact, synthetic intermediates.
14a
Daumas M.
Vo-Quang Y.
Vo-Quang L.
Le Goffic F.
Synthesis
1989,
64
14b
Zhong Y.-L.
Shing TKM.
J.
Org. Chem.
1997,
62:
2622
15
Banfield SC.
Ph.
D. Dissertation
The University of Western Ontario,
London;
Canada:
2004.
16a
Brown DW.
Mahon MF.
Ninan A.
Sainsbury M.
J.
Chem. Soc., Perkin Trans. 1
1997,
2329
16b
Doss SH.
Louca NA.
Elmegeed GA.
Mohareb RM.
Arch. Pharm.
Res.
1999,
22:
496
17
England DB.
Kerr MA.
J. Org. Chem.
2005,
70:
6519
18a
Plieninger H.
Volkl A.
Chem.
Ber.
1976,
109:
2121
18b
Plieninger H.
Schmalz D.
Westphal J.
Chem.
Ber.
1976,
109:
2127
18c
Plieninger H.
Schmalz D.
Chem. Ber.
1976,
109:
2141
18d
Plieninger H.
Lehnert W.
Chem. Ber.
1967,
100:
2427
19
Banfield SC.
Kerr MA.
Synlett
2001,
436
20
Maehr H.
Smallheer J.
J. Am. Chem. Soc.
1985,
107:
2943
21
Herb R.
Carroll AR.
Yoshida WY.
Scheuer PJ.
Paul VJ.
Tetrahedron
1990,
46:
3089
22
Capon RJ.
Macleod JK.
Scammells PJ.
Tetrahedron
1986,
42:
6545
23a
Muratake H.
Mikawa A.
Seino T.
Natsume M.
Chem.
Pharm. Bull.
1994,
42:
854
23b
Muratake H.
Mikawa A.
Seino T.
Natsume M.
Chem. Pharm. Bull.
1994,
42:
846
24
Buszek KR.
Brown N.
Luo D.
Org.
Lett.
2009,
11:
201
Select examples:
25a
Macleod JK.
Monaham LC.
Tetrahedron
Lett.
1988,
29:
391
25b
Blechert S.
Wiedenau P.
Monse B.
Tetrahedron
1995,
51:
1167
25c
Boger DL.
Zhang M.
J. Am. Chem.
Soc.
1991,
113:
4230
25d
Kanematsu K.
Lee M.
Ikeda I.
Kawabe T.
Mori S.
J. Org. Chem.
1996,
61:
3406
26
Silva LF.
Craveiro MV.
Tébéka IRM.
Tetrahedron
2010,
66:
3875
27a
Jackson SK.
Banfield SC.
Kerr MA.
Org.
Lett.
2005,
7:
1215
27b
Jackson SJ.
Kerr MA.
J.
Org. Chem.
2007,
72:
1405
28
Fujimoto Y.
Tatsuno T.
Tetrahedron Lett.
1976,
17:
3325
29
Todd MH.
Oliver SF.
Abell C.
Org.
Lett.
1999,
1:
1149
30a
Munday-Finch SC.
Wilkins AL.
Miles CO.
J.
Agric. Food Chem.
1998,
46:
590
30b
Munday-Finch SC.
Wilkins AL.
Miles CO.
Ede RM.
Thomson RA.
J. Agric. Food Chem.
1996,
44:
2782
30c
Harrison CA.
Jackson PM.
Moody CJ.
Williams JMJ.
J.
Chem. Soc., Perkin Trans. 1
1995,
1131
31a
Wilson BJ.
Wilson CH.
Hayes AW.
Nature
1968,
220:
77
31b
de Jesus AE.
Steyn PS.
van
Heerden FR.
Vleggar R.
Wessels PL.
Hull WE.
J. Chem. Soc., Chem. Commun.
1981,
289
31c
Smith AB.
Kanoh N.
Ishiyama H.
Minakawa N.
Rainier JD.
Hartz RA.
Cho YS.
Cui H.
Moser WH.
J. Am. Chem. Soc.
2003,
125:
8228
31d
Smith AB.
Kanoh N.
Ishiyama H.
Hartz RA.
J.
Am. Chem. Soc.
2000,
122:
11254
31e
Smith AB.
Kanoh N.
Minakawa N.
Rainier JD.
Blase FR.
Hartz RA.
Org.
Lett.
1999,
1:
1263 ;
and earlier studies cited within
31f
Rivkin A.
Gonzalez-Lopez de Turiso F.
Nagashima T.
Curran DP.
J.
Org. Chem.
2004,
69:
3719
31g
Rivkin A.
Nagashima T.
Curran DP.
Org.
Lett.
2003,
5:
419
32
England DB.
Magolan J.
Kerr MA.
Org.
Lett.
2006,
8:
2209
33
Nicolaou KC.
Lysenko Z.
Tetrahedron Lett.
1977,
18:
1257
34a
Boger DL.
Boyce CW.
Garbaccio RM.
Goldberg JA.
Chem. Rev.
1997,
97:
787
34b
Martin DG.
Kelly RC.
Watt W.
Wicnienski N.
Mizsak SA.
Nielsen JW.
Prairie MD.
J. Org. Chem.
1988,
53:
4610
35a
Tichenor MS.
Kastrinsky DB.
Boger DL.
J.
Am. Chem. Soc.
2004,
126:
8396
35b
Tichenor MS.
Trzupek JD.
Kastrinsky DB.
Shiga F.
Hwang I.
Boger DL.
J.
Am. Chem. Soc.
2006,
128:
15683
35c
Okano K.
Tokuyama H.
Fukuyama T.
J.
Am. Chem. Soc.
2006,
128:
7136
36
Kraus GA.
Yue S.
Sy J.
J.
Org. Chem.
1985,
50:
283
37
Ganton MD.
Kerr MA.
J. Org. Chem.
2007,
72:
574
38
Zhang H.
Qiu S.
Tamez P.
Tan GT.
Aydogmus Z.
Hung NV.
Cuong NM.
Angerhofer C.
Doel Soejarto D.
Pezzuto JM.
Fong HHS.
Pharm. Biol.
2002,
40:
221
39
Leduc AB.
Kerr MA.
Eur. J. Org. Chem.
2007,
237
For recent reviews on the synthesis
of carbazoles, see:
40a
Knölker H.-J.
Reddy KR. In The Alkaloids
Vol. 65:
Academic
Press;
New York:
2008.
40b
Knölker H.-J.
Reddy KR.
Chem.
Rev.
2002,
102:
4303
41a
Kumar V.
Reisch J.
Wickramasinghe A.
Aust. J. Chem.
1989,
42:
1375
41b
Ito C.
Furukawa H.
Chem. Pharm. Bull.
1990,
38:
1548
41c
Forke R.
Krahl MP.
Krause T.
Schlechtingen G.
Knö lker H.-J.
Synlett
2007,
268
41d
Ito C.
Itoigawa M.
Sato A.
Hasan CM.
Rashid MA.
Tokuda H.
Mukainaka T.
Nishino H.
Furukawa H.
J. Nat. Prod.
2004,
67:
1488
41e
Pacher T.
Bacher M.
Hofer O.
Greger H.
Phytochemistry
2001,
58:
129
41f
Wang J.
Zheng Y.
Efferth T.
Wang R.
Shen Y.
Hao X.
Phytochemistry
2005,
66:
697
42
Lebold TP.
Kerr MA.
Org. Lett.
2007,
9:
1883
43
Koh JH.
Mascarenhas C.
Gagne MR.
Tetrahedron
2004,
60:
7405
44a
Ito C.
Katsuno S.
Ruangrungsi N.
Furukawa H.
Chem. Pharm.
Bull.
1998,
46:
344
44b
Wu T.-S.
Huang S.-C.
Wu P.-L.
Chem.
Pharm. Bull.
1998,
46:
1459
44c
Ito C.
Itoigawa M.
Aizawa K.
Yoshida K.
Ruangrungsi N.
Furukawa H.
J. Nat. Prod.
2009,
72:
1202
44d
Jana AK.
Mal D.
Chem. Commun.
2010,
46:
4411
45
Lebold TP.
Kerr MA.
Org. Lett.
2008,
10:
997
46
Rodriguez J.
Brun P.
Waegell B.
J.
Organomet. Chem.
1989,
359:
343
A slight improvement to 55% ee
could be obtained if the reaction was carried out at 0 ˚C;
however, the significant increase in reaction time was not justified
by the modest increase in ee and as such the reaction was carried
out at room temperature. For asymmetric dihydroxylation (AD-mix-β)
of similar substrates resulting in the formation of the (R ) alcohol, see:
47a
Sharma R.
Bulger PG.
McNevin M.
Dormer PG.
Ball RG.
Streckfuss E.
Cuff JF.
Yin J.
Cheng C.
Org.
Lett.
2009,
11:
3194
47b
Kaur N.
Xia Y.
Jin Y.
Dat NT.
Gajulapati K.
Choi Y.
Hong Y.-S.
Lee JJ.
Lee K.
Chem. Commun.
2009,
1879
For asymmetric dihydroxylation (AD-mix-α)
of similar substrates resulting in the formation of the (S ) alcohol, see:
47c
Jiang H.
Hamada Y.
Org. Biomol. Chem.
2009,
4173 ; and reference 47b
48
Arhart RJ.
Martin JC.
J. Am. Chem. Soc.
1972,
94:
5003