Abstract
The ability of a chiral isothiourea to promote the regio- and
enantioselective O- to C-carboxyl transfer of a series of 3-alkyl-5-aryl-
and 5-methyl-3-phenylfuranyl carbonates is examined, generating
preferentially the α-regioisomers (α/γ up
to 83:17) with high asymmetric induction (up to 83% ee).
Key words
isothiourea - organocatalysis - carboxyl transfer - furanyl carbonates - butenolides
References and Notes
For representative examples, see:
1a
Figadére B.
Acc. Chem. Res.
1995,
28:
359
1b
Tu L.
Zhao Y.
Yu Z.
Cong Y.
Xu G.
Peng L.
Zhang P.
Cheng X.
Zhao Q.
Helv. Chim. Acta
2008,
91:
1578
1c
de Guzman FS.
Schmitz FJ.
J.
Nat. Prod.
1990,
53:
926
1d
Evidente A.
Sparapano L.
J. Nat. Prod.
1994,
57:
1720
1e
Dogné J.
Supuran CT.
Pratico D.
J. Med. Chem.
2005,
48:
2251
1f
Braña MF.
García ML.
Lòpez B.
de Pascual-Teresa B.
Ramos A.
Pozuelo JM.
Domínguez MT.
Org.
Biomol. Chem.
2004,
2:
1864
2
Singh RP.
Foxman BM.
Deng L.
J.
Am. Chem. Soc.
2010,
132:
9558
3
Brown SP.
Goodwin NC.
MacMillan DWC.
J. Am. Chem. Soc.
2003,
125:
1192
4
Shaw SA.
Aleman P.
Christy J.
Kampf JW.
Va P.
Vedejs E.
J. Am. Chem. Soc.
2006,
128:
925-934
5 For an excellent recent review of
Lewis base mediated reaction processes, see: Denmark SE.
Beutner GL.
Angew.
Chem. Int. Ed.
2008,
47:
1560
For examples of our previous research
programme concerned with applications of NHCs in organocatalysis, see:
6a
Thomson JE.
Rix K.
Smith AD.
Org. Lett.
2006,
8:
3785
6b
Thomson JE.
Campbell CD.
Concellón C.
Duguet N.
Rix K.
Slawin AMZ.
Smith AD.
J. Org. Chem.
2008,
73:
2784
6c
Campbell CD.
Duguet N.
Gallagher KA.
Thomson JE.
Lindsay AG.
O’Donoghue A.
Smith AD.
Chem.
Commun.
2008,
3528
6d
Duguet N.
Campbell CD.
Slawin AMZ.
Smith AD.
Org.
Biomol. Chem.
2008,
6:
1108
6e
Thomson JE.
Kyle AF.
Concellón C.
Gallagher KA.
Lenden P.
Morrill LC.
Miller AJ.
Joannesse C.
Slawin AMZ.
Smith AD.
Synthesis
2008,
2805
6f
Concellón C.
Duguet N.
Smith AD.
Adv. Synth. Catal.
2009,
351:
3001
6g
Duguet N.
Donaldson A.
Leckie SM.
Douglas J.
Shapland P.
Churchill G.
Slawin AMZ.
Smith AD.
Tetrahedron:
Asymmetry
2010,
21:
582
6h
Duguet N.
Donaldson A.
Leckie SM.
Shapland P.
Slawin AMZ.
Smith AD.
Tetrahedron: Asymmetry
2010,
21:
601
6i
Douglas J.
Ling KB.
Concellón C.
Churchill G.
Slawin AMZ.
Smith AD.
Eur.
J. Org. Chem.
2010,
5863
6j
Ling KB.
Smith AD.
Chem.
Commun.
2011,
47:
373
6k
Campbell CD.
Collett CJ.
Thomson JE.
Slawin AMZ.
Smith AD.
Org. Biomol. Chem.
2011,
9:
4205
For examples of our previous research
programme concerned with applications of isothioureas in organocatalysis,
see:
7a
Joannesse C.
Simal C.
Concellón C.
Thomson JE.
Campbell CD.
Slawin AMZ.
Smith AD.
Org. Biomol. Chem.
2008,
6:
2900
7b
Woods PA.
Morrill LC.
Lebl T.
Slawin AMZ.
Bragg RA.
Smith AD.
Org.
Lett.
2010,
12:
2660
7c
Belmessieri D.
Joannesse C.
Woods PA.
MacGregor C.
Jones C.
Campbell CD.
Johnston CP.
Duguet N.
Concellón C.
Bragg RA.
Smith AD.
Org. Biomol. Chem.
2011,
9:
559
7d
Belmessieri B.
Morrill LC.
Simal C.
Slawin AMZ.
Smith AD.
J. Am. Chem. Soc.
2011,
133:
2714
For initial work, see:
8a
Steglich W.
Höfle G.
Tetrahedron Lett.
1970,
11:
4727
For asymmetric Steglich rearrangements of oxazolyl carbonates,
see:
8b
Ruble JC.
Fu GC.
J.
Am. Chem. Soc.
1998,
120:
11532
8c
Shaw SA.
Aleman P.
Vedejs E.
J. Am. Chem. Soc.
2003,
125:
13368
8d
Nguyen HV.
Butler DCD.
Richards CJ.
Org. Lett.
2006,
8:
769
8e
Busto E.
Gotor-Fernández V.
Gotor V.
Adv.
Synth. Catal.
2006,
348:
2626
8f
Seitzberg JG.
Dissing C.
Søtofte I.
Norrby P.-O.
Johannsen M.
J. Org. Chem.
2005,
70:
8332
8g
Dietz FR.
Gröger H.
Synlett
2008,
663
8h
Dietz FR.
Gröger H.
Synthesis
2009,
4208
8i
Uraguchi D.
Koshimoto K.
Miyake S.
Ooi T.
Angew. Chem. Int. Ed.
2010,
49:
5567
8j
Zhang Z.
Xie F.
Jia J.
Zhang W.
J. Am. Chem. Soc.
2010,
132:
15939
9
Joannesse C.
Johnston CP.
Concellón C.
Simal C.
Philp D.
Smith AD.
Angew. Chem. Int. Ed.
2009,
48:
8914
Selected alternative applications
of chiral isothioureas in asymmetric catalysis are listed herein.
For kinetic resolutions using anhydrides as acylating agents, see:
10a
Birman VB.
Jiang H.
Li X.
Geo V.
Uffman EW.
J.
Am. Chem. Soc.
2006,
128:
6536
10b
Birman VB.
Li X.
Org. Lett.
2006,
8:
1351
10c
Birman VB.
Geo L.
Org. Lett.
2006,
8:
4859
10d
Birman VB.
Jiang H.
Li X.
Org. Lett.
2007,
9:
3237
10e
Birman VB.
Li X.
Org. Lett.
2008,
10:
1115
10f
Yang X.
Birman VB.
Adv. Synth. Catal.
2009,
351:
2525
10g
Xu Q.
Zhou H.
Geng X.
Chen P.
Tetrahedron
2009,
65:
2232
10h
Belmessieri D.
Joannesse C.
Woods PA.
MacGregor C.
Jones C.
Campbell CD.
Johnston CP.
Duguet N.
Concellón C.
Bragg RA.
Smith AD.
Org. Biomol. Chem.
2011,
9:
559
For kinetic resolutions using carboxylic acids as acylating
agents utilising in situ formation of a reactive mixed anhydride,
see:
10i
Shiina I.
Nakata K.
Tetrahedron Lett.
2007,
48:
8314
10j
Shiina I.
Nakata K.
Sugimoto M.
Onda Y.
Iizumi T.
Ono K.
Heterocycles
2009,
77:
801
10k
Yang X.
Birman VB.
Adv. Synth. Catal.
2009,
351:
2301
10l
Shiina I.
Nakata K.
Heterocycles
2010,
80:
169
10m
Shiina I.
Nakata K.
Onda Y.
Eur.
J. Org. Chem.
2008,
5887
10n
Shiina I.
Nakata K.
Ono K.
Sugimoto M.
Sekiguchi A.
Chem.
Eur. J.
2010,
16:
167
10o
Nakata K.
Onda Y.
Ono K.
Shiina I.
Tetrahedron Lett.
2010,
51:
5666
10p
Shiina I.
Ono K.
Nakata K.
Chem.
Lett.
2011,
40:
147
11
2 was readily
prepared on a multigram scale by alkylation of the dianion of phenylacetic
acid with 2-methyloxirane; see experimental section for synthesis.
12 The selenation/elimination
sequence was based upon literature precedent in these systems: Pour M.
Spulák M.
Balsánek V.
Kunes J.
Kubanová P.
Buchta V.
Bioorg. Med.
Chem.
2003,
11:
2843
13a
White JD.
Somers TC.
Reddy GN.
J.
Org. Chem.
1992,
57:
4991
13b
Donohoe TJ.
Harris RM.
Burrows J.
Parker J.
J. Am. Chem.
Soc.
2006,
128:
13704
14 Reaction in toluene and Et2 O
at -20 ˚C gave <10% conversion
to C -carboxy products, that was assumed
to be due to low solubility of 1 at these
temperatures
15 (R )-TADMAP
was kindly donated by Prof. Edwin Vedejs. Consistent with the literature,
rearrangement of furanyl carbonate 5 with
(R )-TADMAP gave a 60:40 mixture of α/γ regioisomers,
with purification giving the major α-regio-isomer 8 in 49% yield and 85% ee.
For representative examples that
demonstrate the preference of substituents adjacent to an N -acyl group in heterocyclic compounds
to adopt a pseudoaxial position, see:
16a
Sinclair PJ.
Zhai D.
Reibenspies J.
Williams RMJ.
J.
Am. Chem. Soc.
1986,
108:
1103
16b
Dellaria JF.
Santarsiero BD.
J.
Org. Chem.
1989,
54:
3916
16c
Drew MGB.
Harwood LM.
Park G.
Price DW.
Tyler SNG.
Park CR.
Cho SG.
Tetrahedron
2001,
57:
5641
17
Anderson RJ.
Adams KG.
Chinn HR.
Henrick CA.
J. Org. Chem.
1980,
45:
2229