Subscribe to RSS
DOI: 10.1055/s-0030-1260760
Direct Benzylic Oxidation with Sodium Hypochlorite Using a New Efficient Catalytic System: TEMPO/Co(OAc)2
Publication History
Publication Date:
26 May 2011 (online)
Abstract
Direct benzylic oxidation of arenes was achieved using NaClO/TEMPO/Co(OAc)2. Various aromatic aldehydes and ketones were obtained from alkylarenes directly by benzylic oxidation in good to excellent yields. The reaction reactivity, selectivity, and scope of the reaction were investigated.
Key words
benzylic oxidation - arenes - transition metals - TEMPO - sodium hypochlorite
- Supporting Information for this article is available online:
- Supporting Information
-
1a
Sheldon RA.Kochi JK. Metal-Catalyzed Oxidations of Organic Compounds Academic Press; New York: 1981. -
1b
Warren S. In Organic Synthesis: The Disconnection Approach J. Wiley and Sons; Singapore: 2004. p.57 -
1c
Warren S. In Organic Synthesis: The Disconnection Approach John Wiley and Sons; Singapore: 2004. p.201 -
1d
Warren S. In Organic Synthesis: The Disconnection Approach John Wiley and Sons; Singapore: 2004. p.330 -
1e
Recupero F.Punta C. Chem. Rev. 2007, 107: 3800 -
1f
Handbook
of C-H Transformation
Dyker D. Wiley-VCH; Weinheim: 2005. -
2a
Rangarajan R.Eisenbraun EJ. J. Org. Chem. 1985, 50: 2435 -
2b
Rathore R.Saxena N.Chandrasekaran S. Synth. Commun. 1986, 16: 1493 -
2c
Muzart J. Tetrahedron Lett. 1987, 28: 3139 -
3a
Gannon SM.Krause JG. Synthesis 1987, 915 -
3b
Li WS.Liu LG. Synthesis 1989, 293 -
3c
Zhao D.Lee DG. Synthesis 1994, 915 -
3d
Shaabani A.Lee DG. Tetrahedron Lett. 2001, 42: 5833 -
4a
Banik BK.Venkatraman MS.Mukhopadhyay C.Becker FF. Tetrahedron Lett. 1998, 39: 7247 -
4b
Shaabani A.Bazgir A.Abdoli M. Synth. Commun. 2002, 32: 675 -
4c
Shaabani A.Lee DG. Synth. Commun. 2003, 33: 1255 -
5a
Ishii Y.Nakayama K.Takeno M.Sakaguchi S.Iwahama T.Nishiyama Y. J. Org. Chem. 1995, 60: 3934 -
5b
Yang G.Zhang Q.Miao H.Tong X.Xu J. Org. Lett. 2005, 7: 263 - 6
Lee NH.Lee C.Jung DS. Tetrahedron Lett. 1998, 39: 1385 - 7
Dohi T.Takenaga N.Goto A.Fujioka H.Kita Y.
J. Org. Chem. 2008, 73: 7365 - 8
Catino AJ.Nichols JM.Choi H.Gottipamula S.Doyle MP. Org. Lett. 2005, 7: 5167 - 9
Li H.Li Z.Shi Z. Tetrahedron 2009, 65: 1856 - 10
Yi CS.Kwon KH.Lee DW. Org. Lett. 2009, 11: 1567 -
11a
Vogler T.Studer A. Synthesis 2008, 1979 -
11b
Ciriminna R.Pagliaro M. Org. Process Res. Dev. 2010, 14: 245 -
12a
Lucio Anelli PL.Biffi C.Montanari F.Quici S. J. Org. Chem. 1987, 52: 2559 -
12b
Semmelhack MF.Schmid CR.Cortes DA.Chou CS. J. Am. Chem. Soc. 1984, 106: 3374 -
12c
Shibuya M.Sato T.Tomizawa M.Iwabuchi Y. Chem. Commun. 2009, 13: 1739 -
12d
Hirota M.Tamura N.Saito T.Isogai A. Carbohydr. Polym. 2009, 78: 330 - In fact, the amount of HClO becomes significant at the pH of 8.3:
-
13a
Montanari F.Penso M.Quici S.Vigano P. J. Org. Chem. 1985, 50: 4888 -
13b
Banfi S.Montanari F.Quici S. J. Org. Chem. 1989, 54: 1850 -
14a
Singh SJ.Jayaram RV. Catal. Commun. 2009, 10: 2004 -
14b
Marwah P.Marwah A.Lardy HA. Green Chem. 2004, 6: 570 - TEMPO can react directly with activated hydrocarbons by hydrogen abstraction:
-
15a
Coseri S.Ingold KU. Org. Lett. 2004, 6: 1641 -
15b
Babiarz JE.Cunkle GT.DeBellis AD.Eveland D.Pastor SD.Shum SP. J. Org. Chem. 2002, 67: 6831 - 16 For example, a similar mechanism
is proposed:
Auty K.Gilbert BC.Barry Thomas C.Brown SW.Jones CW.Sanderson WR. J. Mol. Catal. A: Chem. 1997, 117: 279 - It was suggested that the alkyl hypochlorite is converted to ketone in an E2-type reaction:
-
18a
Mohrig JR.Nienhulus DM.Linck CF.Zoeren CV.Fox BB.Mahaffy PG. J. Chem. Educ. 1985, 62: 519 -
18b
Sakai A.Hendrickson DG.Hendrickson WH. Tetrahedron Lett. 2000, 41: 2759 -
18c
Bright ZR.Luyeye CR.Marie Morton AS.Sedenko M.Landolt RG.Bronzi MJ.Bohovic KM.Alex Gonser MW.Lapainis TE.Hendrickson WH. J. Org. Chem. 2005, 70: 684 - It was reported that the oxidation of moderately active alkylaromatics based on NaOCl with a mechanism involving the substitution course:
-
19a
Correia J. J. Org. Chem. 1992, 57: 4555 -
19b
Clark JH.Grigoropoulo G.Scott K. Synth. Commun. 2000, 30: 3731 - 21
Dailey JI.Hays RS.Lee H.Mitchell RM.Ries JJ.Landolt RG.Husmann HH.Lockridge JB.Hendrickson WH. J. Org. Chem. 2000, 65: 2568
References and Notes
General Procedure for the Oxidation of 1a Using Ca(ClO) 2 To a mortar were added 1a (1 mmol), TEMPO (0.05 mmol), Co(OAc)2 (0.01 mmol), Ca(ClO)2 (2.5 mmol), and silica gel (0.3 g). After 0.5 h under solid grinding at r.t., the reaction was complete (TLC control). The reaction mixture was dissolved in CH2Cl2 (3 mL). After filtration, the solvent was evaporated off. The remaining mixture was passed through a silica gel column to give 2a. White solid; mp 47.8-49.4 ˚C. ¹H NMR (400 MHz, CDCl3): δ = 7.74-7.84 (m, 4 H), 7.53-7.63 (m, 2 H), 7.41-7.52 (m, 4 H). ¹³C NMR (100 MHz, CDCl3): δ = 196.7, 137.5, 132.3, 130.0, 128.2. MS (EI): m/z (%) = 182 (100) [M+], 105 (15), 77 (14), 51 (8).
20
General Procedures
To
a solution of alkylarenes (1 mmol) in CH2Cl2 (3
mL) at 0-5 ˚C, TEMPO (0.05 mmol) and
Co(OAc)2 (0.01 mmol) were added followed by the quick
addition of a sample containing 3 mmol of aq NaClO at pH 8.3. After
6 h under magnetic stirring, the reaction was complete (TLC control). The
organic phase is separated, washed with H2O, and dried over
Na2SO4. After filtration, the solvent was
evaporated off. The remaining mixture was passed through a silica
gel column to obtain the pure products.
Compound 2o: pink solid; mp 160.9-162.1 ˚C. ¹H
NMR (400 MHz, CDCl3): δ = 8.21
(d, J = 7.8
Hz, 2 H), 7.39-7.68 (m, 6 H), 2.13 (s, 3 H). ¹³C
NMR (100 MHz, CDCl3): δ = 181.4,
169.9, 141.8, 140.6, 134.4, 133.1, 133.0, 131.5, 130.3, 130.0, 129.0,
128.6, 127.7, 126.3, 89.6, 23.6. MS (EI): m/z (%) = 323
(3) [M+ + 4], 321
(18) [M+ + 2], 319
(27) [M+], 284 (64), 242 (100),
213 (95), 178 (71). ESI-HRMS: m/z calcd
for C16H12Cl2NO2: 320.0245;
found: 320.0226.
Gramscale Preparation
of 2a
To a solution of 1a (8.4
g,50 mmol) in CH2Cl2 (150 mL) at 0-5 ˚C,
TEMPO (0.39 g, 2.5 mmol) and Co(OAc)2 (0.12 g, 0.5mmol)
were added followed by the quick addition of a sample containing
150 mmol of aq NaClO at pH 8.3. The mixture was vigorously stirred
for 6 h. The organic phase is separated and washed with H2O.
The solvent was evaporated off. Purification of the residue by recrystallization
gave 2a (7.98 g, 47.5 mmol, mp 47-49 ˚C)
in 95% yield.