Synlett, Table of Contents SYNPACTS © Georg Thieme Verlag Stuttgart ˙ New York Kinetic and Thermodynamic Self-Sorting in Synthetic Systems Karolina Osowska, Ognjen Š. Miljanić*Department of Chemistry, University of Houston, 136 Fleming Building, Houston, TX 77204-5003, USAFax: +1(713)7432709; e-Mail: miljanic@uh.edu; Recommend Article Abstract Buy Article All articles of this category Abstract Self-sorting represents the spontaneous transformation of a low-order multicomponent system into several high-order subsystems with fewer components. This elementary behavior is involved in many chemical self-organization processes, serves as a model for complex biological systems, and could allow rapid identification of new sensors, solar cell components, and other structured functional architectures, as well as new reactions. Selected recent examples of self-sorting in synthetic systems are reviewed. Key words chemoselectivity - imines - oxidation - substituent effects - supramolecular chemistry Full Text References References 1 Complexity in Chemistry, Biology, and Ecology Bonchev D. Rouvray DH. Springer; New York NY: 2005. 2a Voet D. Voet JG. Biochemistry Wiley; New York: 1995. 3 Krugman PR. The Self-Organizing Economy Blackwell Publishers; Cambridge, MA: 1996. Studies of interactions within complex chemical systems are often grouped under the term ‘systems chemistry’. See: 4a Nitschke JR. Nature (London) 2009, 462: 736 4b Stoddart JF. Nat. Chem. 2009, 1: 14 4c Ludlow RF. Otto S. Chem. Soc. Rev. 2008, 37: 101 4d Kindermann M. Stahl I. Reimold M. Pankau WM. von Kiedrowski G. Angew. Chem. Int. Ed. 2005, 44: 6750 See, for example: 5a Shi X. Fettinger JC. Cai M. Davis JT. Angew. Chem. Int. Ed. 2000, 39: 3124 5b Prins LJ. de Jong F. Timmerman P. Reinhoudt DN. Nature (London) 2000, 408: 181 5c Prins LJ. Huskens J. de Jong F. Timmerman P. Reinhoudt DN. Nature (London) 1999, 398: 498 6 Kagan HB. Fiard JC. Top. Stereochem. 1988, 18: 249 For synthetic self-replicators, see: 7a Kassianidis E. Pearson RJ. Wood EA. Philp D. Faraday Discuss. 2010, 145: 235 7b Vidonne A. Philp D. Eur. J. Org. Chem. 2009, 593 7c Patzke V. von Kiedrowski G. ARKIVOC 2007, (v): 293 7d Issac R. Chmielewski J. J. Am. Chem. Soc. 2002, 124: 6808 7e Saghatelian A. Yokobayashi Y. Soltani K. Ghadiri MR. Nature (London) 2001, 409: 797 7f Wintner EA. Conn MM. Rebek JJr. Acc. Chem. Res. 1994, 27: 198 7g Orgel LE. Nature (London) 1992, 358: 203 For recent examples related to self-sorting, see: 8a Jiang W. Schäfer A. Mohr PC. Schalley CA. J. Am. Chem. Soc. 2010, 132: 2309 8b Jiang W. Schalley CA. J. Mass Spectrom. 2010, 45: 788 See, for example: 9a Hunt RAR. Ludlow RF. Otto S. Org. Lett. 2009, 11: 5110 9b Ludlow RF. Liu J. Li H. Roberts SL. Sanders JKM. Otto S. Angew. Chem. Int. Ed. 2007, 46: 5762 9c Corbett PT. Sanders JKM. Otto S. Angew. Chem. Int. Ed. 2007, 46: 8858 10a Ghosh S. Isaacs L. In Dynamic Combinatorial Chemistry in Drug Discovery, Bioorganic Chemistry, and Materials Science Miller BL. Wiley; Hoboken: 2010. Chap. 4. p.155-168 10b Northrop BH. Zheng Y.-R. Chi K.-W. Stang PJ. Acc. Chem. Res. 2009, 42: 1554 10c Nitschke JR. Acc. Chem. Res. 2007, 40: 103 11 Sarma RJ. Nitschke JR. Angew. Chem. Int. Ed. 2008, 47: 377 12a Reek JNH. Otto S. Dynamic Combinatorial Chemistry Wiley-VCH; Weinheim: 2010. 12b Dynamic Combinatorial Chemistry in Drug Discovery, Bioorganic Chemistry, and Materials Science Miller BL. Wiley; Hoboken: 2010. 12c Corbett PT. Leclaire J. Vial L. West KR. Wietor J.-L. Sanders JKM. Otto S. Chem. Rev. 2006, 106: 3652 12d Rowan SJ. Cantrill SJ. Cousins GRL. Sanders JKM. Stoddart JF. Angew. Chem. Int. Ed. 2002, 41: 898 13 Wu A. Isaacs L. J. Am. Chem. Soc. 2003, 125: 4831 14 Burd C. Weck M. Macromolecules 2005, 38: 7225 Self-association of molecular clips 7 and 8 had been previously demonstrated. See: 15a Wu A. Chakraborty A. Fettinger JC. Flowers RAII. Isaacs L. Angew. Chem. Int. Ed. 2002, 41: 4028 15b Ghosh S. Wu A. Fettinger JC. Zavalij PY. Isaacs L. J. Org. Chem. 2008, 73: 5915 15c Isaacs L. Witt D. Lagona J. Org. Lett. 2001, 3: 3221 16 Taylor PN. Anderson HL. J. Am. Chem. Soc. 1999, 121: 11538 17 Mukhopadhyay P. Wu A. Isaacs L. J. Org. Chem. 2004, 69: 6157 18a Liu S. Ruspic C. Mukhopadhyay P. Chakrabarti S. Zavalij PY. Isaacs L. J. Am. Chem. Soc. 2005, 127: 15959 18b Mukhopadhyay P. Zavalij PY. Isaacs L. J. Am. Chem. Soc. 2006, 128: 14093 19a Jiang W. Wang Q. Linder I. Klautzsch F. Schalley CA. Chem. Eur. J. 2011, 17: 2344 19b Masson E. Lu X. Ling X. Patchell DL. Org. Lett. 2009, 11: 3798 19c Celtek G. Artar M. Scherman OA. Tuncel D. Chem. Eur. J. 2009, 15: 10360 19d Rekharsky MV. Yamamura H. Ko YH. Selvapalam N. Kim K. Inoue Y. Chem. Commun. 2008, 2236 20a Wang F. Han C. He C. Zhou Q. Zhang J. Wang C. Li N. Huang F. J. Am. Chem. Soc. 2008, 130: 11254 20b Jiang W. Schalley CA. Proc. Natl. Acad. Sci. U.S.A. 2009, 106: 10425 20c Jiang W. Winkler HDF. Schalley CA. J. Am. Chem. Soc. 2008, 130: 13852 21a Rudzevich Y. Rudzevich V. Klautzsch F. Schalley CA. Böhmer V. Angew. Chem. Int. Ed. 2009, 48: 3867 21b Braekers D. Peters C. Bogdan A. Rudzevich Y. Böhmer V. Desreux JF. J. Org. Chem. 2008, 73: 701 22 Chas M. Gil-Ramírez G. Escudero-Adán EC. Benet-Buchholz J. Ballester P. Org. Lett. 2010, 12: 1740 23a Ajami D. Hou J.-L. Dale TJ. Barrett E. Rebek J Jr. Proc. Natl. Acad. Sci. U.S.A. 2009, 106: 10430 23b Barrett ES. Dale TJ. Rebek JJr. J. Am. Chem. Soc. 2008, 130: 2344 24 Tomimasu N. Kanaya A. Takashima Y. Yamaguchi H. Harada A. J. Am. Chem. Soc. 2009, 131: 12339 25a Lehn J.-M. Science 2002, 295: 2400 25b Krämer R. Lehn J.-M. Marquis-Rigault A. Proc. Natl. Acad. Sci. U.S.A. 1993, 90: 5394 26 Rowan SJ. Hamilton DG. Brady PA. Sanders JKM. J. Am. Chem. Soc. 1997, 119: 2578 27a Zheng Y.-R. Yang H.-B. Northrop BH. Ghosh K. Stang PJ. Inorg. Chem. 2008, 47: 4706 27b Han J.-M. Pan J.-L. Lei T. Liu C. Pei J. Chem. Eur. J. 2010, 16: 13850 27c Lin J.-B. Xu X.-N. Jiang X.-K. Li Z.-T. J. Org. Chem. 2008, 73: 9403 28a Mahata K. Saha ML. Schmittel M. J. Am. Chem. Soc. 2010, 132: 15933 28b Schmittel M. Mahata K. Chem. Commun. 2010, 46: 4163 28c Mahata K. Schmittel M. J. Am. Chem. Soc. 2009, 131: 16544 29 Northrop BH. Yang H.-B. Stang PJ. Inorg. Chem. 2008, 47: 11257 30a Campbell EV. de Hatten X. Delsuc N. Kauffmann B. Huc I. Nitschke JR. Nat. Chem. 2010, 2: 684 30b Hutin M. Cramer CJ. Gagliardi L. Shahi ARM. Bernardinelli G. Cerny R. Nitschke JR. J. Am. Chem. Soc. 2007, 129: 8774 30c Schultz D. Nitschke JR. J. Am. Chem. Soc. 2006, 128: 9887 31a Barboiu M. Dumitru F. Legrand Y.-M. Petit E. van der Lee A. Chem. Commun. 2009, 2192 31b Dumitru F. Legrand Y.-M. van der Lee A. Barboiu M. Chem. Commun. 2009, 2667 32 Osowska K. Miljanić OŠ. J. Am. Chem. Soc. 2011, 133: 724 33a Curtin DY. Rec. Chem. Prog. 1954, 15: 111 33b Seeman JI. Chem. Rev. 1983, 83: 83 34a Hwang I.-W. Kamada T. Ahn TK. Ko DM. Nakamura T. Tsuda A. Osuka A. Kim D. J. Am. Chem. Soc. 2004, 126: 16187 34b Lee SJ. Cho S.-H. Mulfort KL. Tiede DM. Hupp JT. Nguyen ST. J. Am. Chem. Soc. 2008, 130: 16828 35 Xu H. Hong R. Lu T. Uzun O. Rotello VM. J. Am. Chem. Soc. 2006, 128: 3162 36 Im SG. Bong KW. Kin B.-S. Baxamusa SH. Hammond PT. Doyle PS. Gleason KK. J. Am. Chem. Soc. 2008, 130: 14424 37a Plutowski U. Jester SS. Lenhert S. Kappes MM. Richert C. Adv. Mater. 2007, 19: 1951 See also: 37b Yang H. Metera KL. Sleiman HF. Coord. Chem. Rev. 2010, 254: 2403 37c Aldaye FA. Palmer AL. Sleiman HF. Science 2008, 321: 1795 38 Sugiyasu K. Kawano S.-i. Fujita N. Shinkai S. Chem. Mater. 2008, 20: 2863 39 van Herrikhuyzen J. Syamakumari A. Schenning APHJ. Meijer EW. J. Am. Chem. Soc. 2004, 126: 10021 40 Yin G. Zhou B. Meng X. Wu A. Pan Y. Org. Lett. 2006, 8: 2245