Abstract
An efficient synthesis of 2,3-diarylated fully substituted furans
was performed through the sequential reactions of Knoevenagel reaction,
Stetter reaction catalyzed by NHC, and intramolecular cyclization
under solvent-free conditions. The protocol has the advantages of
easy workup, high yields, and an environmental benign procedure
compared with the reported methods.
Key words
NHC - fully substituted furans - umpolung - solvent-free synthesis - multicomponent reaction
References and Notes
1a
Hou XL.
Yang Z.
Wong HNC. In
Progress in Heterocyclic Chemistry
Vol.
15:
Gribble G.-W.
Joule JA.
Pergamon;
Oxford:
2008.
p.176
1b
Keay BA.
Dibble PW. In
Comprehensive Heterocyclic Chemistry II
Vol.
2:
Katritzky AR.
Rees CW.
Scriven EFV.
Elsevier;
Oxford:
1997.
p.395
1c
Hou XL.
Cheung HY.
Hon TY.
Kwan PL.
Lo TH.
Tong SYT.
Wong HNC.
Tetrahedron
1998,
54:
1955
1d
Keay BA.
Chem. Soc. Rev.
1999,
28:
209
2a
Lipshutz BH.
Chem. Rev.
1986,
86:
795
2b
Wong HNC.
Yu P.
Yick C.-Y.
Pure Appl. Chem.
1999,
71:
1041
2c
Lee H.-K.
Chan K.-F.
Hui C.-W.
Yim H.-K.
Wu X.-W.
Wong HNC.
Pure Appl. Chem.
2005,
77:
139
3a
Selvaraj CM.
ChemMedChem
2010,
5:
255
3b
Ajit A.
J.
Med. Chem.
2010,
53:
37
3c
Hayato T.
Adv.
Mater.
2009,
21:
3776
3d
Kufareva I.
J.
Med. Chem.
2008,
51:
7921
3e
Flynn BL.
J. Med. Chem.
2002,
45:
2670
3f
Simone B.
Maria K.
J. Chem. Inf. Model.
2009,
49:
2489
3g
Jochen Z.
Erwin VA.
J. Steroid Biochem.
Mol. Biol.
2007,
104:
259
4a
Taylor EC.
Patel HH.
Jun J.-G.
J. Org. Chem.
1995,
60:
6684
4b
Eger K.
Folkers G.
Frey M.
Zimmermann W.
Koop-Kirfel G.
Synthesis
1988,
632
4c
Briel D.
Rybak A.
Kronbach C.
Eur.
J. Med. Chem.
2010,
69
4d
Carlsson L.
Helgee EA.
J. Chem. Inf. Model.
2009,
49:
2551
4e
Lee D.
Electrophoresis
2000,
21:
2405
4f
Iris F.
Wilson WD.
J. Med. Chem.
1999,
42:
2260
5a
Marshall JA.
Wang XJ.
J. Org. Chem.
1991,
56:
960
5b
Trost BM.
McIntosh MC.
J.
Am. Chem. Soc.
1995,
117:
7255
5c
Marshall JA.
Robinson ED.
J.
Org. Chem.
1990,
55:
3450
5d
Marshall JA.
Wang X.
J. Org. Chem.
1992,
57:
3387
5e
Marshall JA.
DuBay WJ.
J.
Org. Chem.
1993,
58:
3602
6
Donnelly DMX.
Meegan MJ. In
Comprehensive Heterocyclic Chemistry
Vol.
4:
Bird CW.
Cheeseman
GWH.
Pergamon;
Oxford:
1984.
p.657
7a
Kreiser W.
Nachr. Chem. Tech. Lab.
1981,
29:
118
7b
Lipshutz BH.
Chem. Rev.
1986,
86:
795
8a
Chen KW.
Syu S.-E.
Jang YJ.
Org. Biomol. Chem.
2011,
9:
2098
8b
Melzig L.
Rauhut CB.
Knochel P.
Chem.
Commun.
2009,
3536
8c
Ila H.
Baron O.
Wagner AJ.
Knochel P.
Chem. Commun.
2006,
583
9a
Minetto G.
Raveglia LF.
Sega A.
Taddei M.
Eur.
J. Org. Chem.
2005,
5277
9b
Mattson AE.
Bharadwaj
AR.
Zuhl AM.
Scheidt KA.
J. Org. Chem.
2006,
71:
5715
10
Mross G.
Holtz E.
Langer P.
J.
Org. Chem.
2006,
71:
8045
11a
Dudnik AS.
Gevorgyan V.
Angew.
Chem. Int. Ed.
2007,
46:
5195
11b
Hashmi ASK.
Sinha P.
Adv.
Synth. Catal.
2004,
346:
432
11c
Sniady A.
Wheeler KA.
Dembinski R.
Org.
Lett.
2005,
7:
1769
11d
Liu Y.
Song F.
Song Z.
Liu M.
Yan B.
Org. Lett.
2005,
7:
5409
11e
Zhang J.
Schmalz H.-G.
Angew. Chem. Int. Ed.
2006,
45:
6704
11f
Peng L.
Zhang X.
Ma M.
Wang J.
Angew. Chem. Int. Ed.
2007,
46:
1905
11g
Zhang M.
Jiang H.-F.
Neumann H.
Beller M.
Dixneuf PH.
Angew.
Chem. Int. Ed.
2009,
48:
1681
12a
Snegaroff K.
Komagawa S.
Chevallier F.
Chem. Eur. J.
2010,
16:
8191
12b
Guchhait SK.
Kashyap M.
Saraf S.
Synthesis
2010,
1166
12c
Snegaroff K.
L’Helgoual’ch J.-M.
Bentabed-Ababsa G.
Chem. Eur. J.
2009,
15:
10280
12d
Ryabov AN.
Izmer VV.
Tzarev AA.
Uborsky
DV.
Organometallics
2009,
28:
3614
12e
Denmark SE.
Baird JD.
Regens CS.
J. Org. Chem.
2008,
73:
1440
12f
L’Helgoual’ch JM.
Bentabed-Ababsa G.
Chevallier F.
Yonehara M.
Uchiyama M.
Chem. Commun.
2008,
5375
13a
Han Y.
Ebinger K.
Vandevier LE.
Maloney JW.
Tetrahedron
Lett.
2010,
54:
629
13b
Willemann C.
Gruenert R.
Bednarski PJ.
Troschuetz R.
Bioorg. Med. Chem.
2009,
17:
4406
14a
Kim SY.
Kim DJ.
Bull.
Korean Chem. Soc.
2007,
28:
1114
14b
Watanuki S.
Sakamoto S.
Heterocycles
2004,
62:
127
14c
Selivanov SI.
Zh. Org. Khim.
1981,
17:
666
14d
Prousek J.
Collect.
Czech. Chem. Commun.
1983,
48:
3140
14e
Aran V.-J.
Perez M.-A.
J. Chem. Soc., Perkin Trans.
1
1984,
2009
14f
Liu P.
Lei M.
Ma L.
Hu L.
Synlett
2011,
1133
15a
Maki BE.
Chan A.
Scheidt KA.
Synthesis
2008,
1306
15b
Enders D.
Niemeier O.
Henseler A.
Chem.
Rev.
2007,
107:
5606
15c
Marion N.
Díez-González S.
Nolan IP.
Angew. Chem. Int. Ed.
2007,
46:
2988
15d
Zeitler K.
Angew.
Chem. Int. Ed.
2005,
44:
7506
16a
Wu KJ.
Li GQ.
Li Y.
Dai LX.
You SL.
Chem. Commun.
2011,
493
16b
Yadav LDS.
Singh S.
Rai
VK.
Synlett
2010,
240
16c
Yadav L.
Singh S.
Rai V.
Synlett
2010,
240
16d
Biju AT.
Wurz NE.
Glorius F.
J. Am. Chem. Soc.
2010,
132:
5970
16e
Ryan SJ.
Candish L.
Lupton DW.
J. Am. Chem. Soc.
2009,
131:
14176
16f
He M.
Struble JR.
Bode JW.
J. Am. Chem. Soc.
2006,
128:
8418
16g
Nair V.
Vellalath S.
Poonoth M.
Suresh E.
J. Am. Chem. Soc.
2006,
128:
8736
17a
Inokuma T.
Sakamoto S.
Takemoto Y.
Synlett
2009,
1627
17b
Polonka-Balint A.
Saraceno C.
Ludanyi K.
Synlett
2008,
2846
17c
Wang X.-S.
Wu J.-R.
Li Q.
Yao C.-S.
Tu S.-J.
Synlett
2008,
1185
17d
McNab H.
Nelson DJ.
Rozgowska EJ.
Synthesis
2009,
2171
17e
Xu C.
Bartley JK.
Enache DI.
Synthesis
2005,
3468
17f
Su C.
Chen Z.-C.
Zheng Q.-G.
Synthesis
2003,
555
18a
Nefzi A.
Ostresh JM.
Houghten RA.
Chem. Rev.
1997,
97:
449
18b
Zhang W.
Chem.
Rev.
2004,
104:
2531
18c
Dömling A.
Chem. Rev.
2006,
106:
17
18d
Toure BB.
Hall DG.
Chem.
Rev.
2009,
109:
4439
18e
Zhang W.
Green
Chem.
2009,
11:
911
18f
Sunderhaus J.
Martin SF.
Chem. Eur. J.
2009,
15:
1300
18g
Ganem B.
Acc.
Chem. Res.
2009,
42:
463
19a
Walsh PJ.
Li HM.
Chem.
Rev.
2007,
107:
2503
19b
Hobbs HR.
Thomas NR.
Chem.
Rev.
2007,
107:
2786
19c
Tanaka K.
Toda F.
Chem. Rev.
2000,
100:
1025
19d
Sheldon RA.
Green Chem.
2005,
7:
267
20a
Jiang B.
Tu SJ.
Kaur P.
Wever W.
Li GG.
J. Am. Chem. Soc.
2009,
131:
11660
20b
Yao CS.
Wang CH.
Jiang B.
Feng XD.
Yu CX.
Li TJ.
Tu SJ.
Bioorg. Med. Chem. Lett.
2010,
20:
2884
20c
Yao CS.
Lei S.
Wang CH.
Yu CX.
Tu SJ.
J. Heterocycl. Chem.
2008,
45:
1609
20d
Yao CS.
Lei S.
Wang CH.
Yu CX.
Shao QQ.
Tu SJ.
Chin.
J. Chem.
2008,
26:
2107
20e
Wei P.
Zhang XH.
Tu SJ.
Yan S.
Ying HJ.
Ouyang PK.
Bioorg. Med. Chem.
Lett.
2009,
19:
828
20f
Shi F.
Li CM.
Xia M.
Miao KJ.
Zhao YX.
Tu SJ.
Zheng WF.
Zhang G.
Ma N.
Bioorg.
Med. Chem. Lett.
2009,
19:
5565
20g
Tu SJ.
Zhu XT.
Zhang JP.
Xu JN.
Zhang Y.
Wang Q.
Jia RH.
Jiang B.
Zhang JY.
Yao CS.
Bioorg. Med. Chem. Lett.
2006,
16:
2925
20h
Tu SJ.
Zhang JP.
Zhu XT.
Xu JN.
Zhang Y.
Wang Q.
Jia RH.
Jiang B.
Zhang JY.
Bioorg.
Med. Chem. Lett.
2006,
16:
3578
20i
Tu SJ.
Miao CM.
Fang F.
Feng YJ.
Li TJ.
Zhuang QY.
Zhang XJ.
Zhu SL.
Shi DQ.
Bioorg. Med. Chem. Lett.
2004,
14:
1533
20j
Han ZG.
Zhang G.
Jiang B.
Ma N.
Shi F.
Tu SJ.
J. Comb. Chem.
2009,
11:
809
21
General Procedure
for the Synthesis of 5
Aryl aldehyde 1 (1
mmol), DBU (0.35 mmol), and malononitrile 2 (1
mmol) were triturated together in an agate mortar with a pestle
for 5 min. Then the mixture was kept at 55 ˚C for a certain
time (monitored by TLC). After addition of another aryl aldehyde
(1 mmol), sulfamethiazole salt (0.15 mmol) was added and mixed thoroughly
by grinding at 55 ˚C. The reaction mixture was mixed by
grinding every half an hour with a pestle and mortar during 1-5
h reaction time (monitored by TLC). The resultant mixture was cooled to
r.t., purified through column chromatography using acetone and PE
(1:5) as the eluent, to give pure product 5a -o .
22
Characterization
Data of Representative Compounds 5a
Yield 90%,
white solid, mp 205-206 ˚C (reported
204-206 ˚C). IR (KBr): νmax = 3467,
3443, 2216, 1653, 1455, 1067, 763, 694 cm-¹ . ¹ H
NMR (400 MHz, DMSO-d
6 ): δ = 7.17-7.27
(m, 5 H, ArH), 7.38-7.47 (m, 5 H, ArH). 7.75 (s, 2 H, NH2 )
ppm. ¹³ C NMR (100 MHz, DMSO-d
6 ): δ = 163.5, 136.6,
131.2, 129.4, 129.0, 128.8, 128.6, 128.3, 126.9, 124.2, 121.8, 115.5,
69.2 ppm. ESI-HRMS: m/z calcd
for C17 H11 N2 O [M - H]- :
259.0871; found: 259.0871.