RSS-Feed abonnieren
DOI: 10.1055/s-0030-1261929
© Georg Thieme Verlag KG Stuttgart · New York
Combination Therapy with Nateglinide and Vildagliptin Improves Postprandial Metabolic Derangements in Zucker Fatty Rats
Publikationsverlauf
received 05.04.2010
accepted 21.06.2010
Publikationsdatum:
12. Juli 2010 (online)

Abstract
Postprandial metabolic derangements are one of the risk factors of cardiovascular disease in humans. Insulin resistance and/or impaired early-phase insulin secretion are major determinants of postprandial metabolic derangements. In this study, we investigated the potential utility of combination therapy with vildagliptin, a dipeptidyl peptidase IV (DPP-IV) inhibitor and nateglinide, a rapid-onset/short-duration insulinotropic agent, for the treatment of postprandial metabolic derangements in Zucker Fatty (ZF) rats, an animal model of obesity with insulin resistance. ZF rats fed twice daily with or without high fat diet (HFD) were given vehicle, 50 mg/kg of nateglinide, 10 mg/kg of vildagliptin, or both for 6 weeks. Combination therapy with nateglinide and vildagliptin for 2 weeks ameliorated postprandial hyperglycemia, hypertriglyceridemia, and elevation of free fatty acid in ZF rats fed with HFD. 6-week treatment with nateglinide and vildagliptin not only increased hepatic levels of phosphorylated forkhead box protein 1A (FOXO1A), but also reduced triglyceride contents in the liver. Combination therapy also prevented the loss of pancreatic islet mass in ZF rats fed with HFD. These observations demonstrate that combination therapy with nateglinide and vildagliptin may improve postprandial metabolic derangements probably by ameliorating early phase of insulin secretion and hepatic insulin resistance, respectively, in ZF rats fed with HFD. Since combination therapy with nateglinide and vildagliptin restored the decrease in pancreatic beta cell mass, our present findings suggest that combination therapy could be a promising therapeutic strategy for postprandial dysmetabolism associated with obese and insulin resistance.
Key words
insulin resistance - postprandial metabolic derangements - vildagliptin - nateglinide
References
- 1
Jessani S, Millane T, Lip GY.
Vascular damage in impaired glucose tolerance: an unappreciated phenomenon?.
Curr Pharm Des.
2009;
15
3417-3432
MissingFormLabel
- 2
Yamagishi S, Matsui T, Ueda S, Fukami K, Okuda S.
Clinical utility of acarbose, an alpha-glucosidase inhibitor in cardiometabolic disorders.
Curr Drug Metab.
2009;
10
159-163
MissingFormLabel
- 3
Delorme S, Chiasson JL.
Acarbose in the prevention of cardiovascular disease in subjects with impaired glucose
tolerance and type 2 diabetes mellitus.
Curr Opin Pharmacol.
2005;
5
184-189
MissingFormLabel
- 4
Bae JH, Bassenge E, Kim KB, Kim YN, Kim KS, Lee HJ, Moon KC, Lee MS, Park KY, Schwemmer M.
Postprandial hypertriglyceridemia impairs endothelial function by enhanced oxidant
stress.
Atherosclerosis.
2001;
155
517-523
MissingFormLabel
- 5
Ceriello A, Taboga C, Tonutti L, Quagliaro L, Piconi L, Bais B, Da Ros R, Motz E.
Evidence for an independent and cumulative effect of postprandial hypertriglyceridemia
and hyperglycemia on endothelial dysfunction and oxidative stress generation: effects
of short- and long-term simvastatin treatment.
Circulation.
2002;
106
1211-1218
MissingFormLabel
- 6
Pleiner J, Schaller G, Mittermayer F, Bayerle-Eder M, Roden M, Wolzt M.
FFA-induced endothelial dysfunction can be corrected by vitamin C.
J Clin Endocrinol Metab.
2002;
87
2913-2917
MissingFormLabel
- 7
Nordestgaard BG, Benn M, Schnohr P, Tybjaerg-Hansen A.
Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease,
and death in men and women.
JAMA.
2007;
298
299-308
MissingFormLabel
- 8
Stampfer MJ, Krauss RM, Ma J, Blanche PJ, Holl LG, Sacks FM, Hennekens CH.
A prospective study of triglyceride level, low-density lipoprotein particle diameter,
and risk of myocardial infarction.
JAMA.
1996;
276
882-888
MissingFormLabel
- 9
Pirro M, Mauriège P, Tchernof A, Cantin B, Dagenais GR, Després JP, Lamarche B.
Plasma free fatty acid levels and the risk of ischemic heart disease in men: prospective
results from the Québec Cardiovascular Study.
Atherosclerosis.
2002;
160
377-384
MissingFormLabel
- 10
Banerjee M, Younis N, Soran H.
Vildagliptin in clinical practice: a review of literature.
Expert Opin Pharmacother.
2009;
10
2745-2757
MissingFormLabel
- 11
Kim W, Egan JM.
The role of incretins in glucose homeostasis and diabetes treatment.
Pharmacol Rev.
2008;
60
470-512
MissingFormLabel
- 12
Utzschneider KM, Tong J, Montgomery B, Udayasankar J, Gerchman F, Marcovina SM, Watson CE, Ligueros-Saylan MA, Foley JE, Holst JJ, Deacon CF, Kahn SE.
The dipeptidyl peptidase-4 inhibitor vildagliptin improves beta-cell function and
insulin sensitivity in subjects with impaired fasting glucose.
Diabetes Care.
2008;
31
108-113
MissingFormLabel
- 13
Azuma K, Rádiková Z, Mancino J, Toledo FG, Thomas E, Kangani C, Dalla Man C, Cobelli C, Holst JJ, Deacon CF, He Y, Ligueros-Saylan M, Serra D, Foley JE, Kelley DE.
Measurements of islet function and glucose metabolism with the dipeptidyl peptidase
4 inhibitor vildagliptin in patients with type 2 diabetes.
J Clin Endocrinol Metab.
2008;
93
459-464
MissingFormLabel
- 14
Tushuizen ME, Diamant M, Heine RJ.
Postprandial dysmetabolism and cardiovascular disease in type 2 diabetes.
Postgrad Med J.
2005;
81
1-6
MissingFormLabel
- 15
Yamagishi S, Nakamura K, Jinnouchi Y, Takenaka K, Imaizumi T.
Molecular mechanisms for vascular injury in the metabolic syndrome.
Drugs Exp Clin Res.
2005;
31
123-129
MissingFormLabel
- 16
Kajioka T, Miura K, Kitahara Y, Yamagishi S.
Potential utility of combination therapy with nateglinide and telmisartan for metabolic
derangements in Zucker Fatty rats.
Horm Metab Res.
2007;
39
889-893
MissingFormLabel
- 17
Folch J, Sloane-Stanley GH.
A simple method for the isolation and purification of total lipides from animal tissues.
J Biol Chem.
1957;
226
497-509
MissingFormLabel
- 18
Yoshida T, Yamagishi S, Nakamura K, Matsui T, Imaizumi T, Takeuchi M, Koga H, Ueno T, Sata M.
Pigment epithelium-derived factor (PEDF) ameliorates advanced glycation end product
(AGE)-induced hepatic insulin resistance in vitro by suppressing Rac-1 activation.
Horm Metab Res.
2008;
40
620-625
MissingFormLabel
- 19
Barthel A, Schmoll D.
Novel concepts in insulin regulation of hepatic gluconeogenesis.
Am J Physiol Endocrinol Metab.
2003;
285
E685-E692
MissingFormLabel
- 20
Hall R, Yamasaki T, Kucera T, Waltner-Law M, O’Brien R, Granner DK.
Regulation of phosphoenolpyruvate carboxykinase and insulin-like growth factor-binding
protein-1 gene expression by insulin.
The role of winged helix/forkhead proteins. J Biol Chem.
2000;
275
30169-30175
MissingFormLabel
- 21
Schinner S, Scherbaum WA, Bornstein SR, Barthel A.
Molecular mechanisms of insulin resistance.
Diabetic Med.
2005;
22
674-782
MissingFormLabel
- 22
Miyazaki Y, Akasaka H, Ohnishi H, Saitoh S, DeFronzo RA, Shimamoto K.
Differences in insulin action and secretion, plasma lipids and blood pressure levels
between impaired fasting glucose and impaired glucose tolerance in Japanese subjects.
Hypertens Res.
2008;
31
1357-1363
MissingFormLabel
- 23
Li Y, Hansotia T, Yusta B, Ris F, Halban PA, Drucker DJ.
Glucagon-like peptide-1 receptor signaling modulates beta cell apoptosis.
J Biol Chem.
2003;
278
471-478
MissingFormLabel
Correspondence
S. YamagishiMD, PhD
Department of Pathophysiology
and Therapeutics of Diabetic
Vascular Complications
Kurume University School of
Medicine
67 Asahi-machi
830-0011 Kurume
Japan
Telefon: +81/942/31 7873
Fax: +81/942/31 7873
eMail: shoichi@med.kurume-u.ac.jp