Facial Plast Surg 2010; 26(5): 343-349
DOI: 10.1055/s-0030-1265015
© Thieme Medical Publishers

An Introduction to Stem Cell Biology

Shirin Hemmat1 , David M. Lieberman1 , Sam P. Most1
  • 1Division of Facial Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, California
Further Information

Publication History

Publication Date:
17 September 2010 (online)

ABSTRACT

The field of stem cell biology has undergone tremendous expansion over the past two decades. Scientific investigation has continued to expand our understanding of these complex cells at a rapidly increasing rate. This understanding has produced a vast array of potential clinical applications. This article will serve as an overview of the current state of stem cell research as it applies to scientific and medical applications. Included in the discussion is a review of the many different types of stem cells, including but not limited to adult, embryonic, and perinatal stem cells. Also, this article describes somatic cell nuclear transfer, an exciting technology that allows the production of totipotent stem cells from fully differentiated cells, thereby eliminating the use of embryonic sources. This discussion should serve as a review of the field of stem cell biology and provide a foundation for the reader to better understand the interface of stem cell technology and facial plastic and reconstructive surgery.

REFERENCES

  • 1 National Institutes of Health .Stem cell basics. Introduction. In: Stem Cell Information. Bethesda, MD; National Institutes of Health, U.S. Department of Health and Human Services; 2009 Available at http://stemcells.nih.gov/info/basics/defaultpage.asp Accessed February 19, 2010
  • 2 Campbell N, Reece J, Urry L et al.. Biology. Eighth ed. San Francisco, CA; Pearson Benjamin Cummings 2008: 415-416
  • 3 Anderson S, Kiessling A. Human Embryonic Stem Cells. Second ed. Sudbury, MA; Jones & Barlett 2007 3-6 86-89 167-171 199-200, 204
  • 4 Baharvand H. Embryonic stem cells: establishment, maintenance and differentiation. Frontiers in Stem Cell Research. In: Spanning J New York; Nora Pulishers 2009: 55-60
  • 5 Alison M. An introduction to stem and progenitor cell biology. In: Habib N, Gordon M, Levicor N Stem Cell Biology. London, UK; Imperial College Press 2005: 6
  • 6 Nobelprize.org. The Nobel Prize in Physiology or Medicine 1990 - Press Release. Available at: http://nobelprize.org/nobel_prizes/medicine/laureates/1990/press.html Accessed June 20, 2010
  • 7 Junker J P, Sommar P, Skog M, Johnson H, Kratz G. Adipogenic, chondrogenic and osteogenic differentiation of clonally derived human dermal fibroblasts.  Cells Tissues Organs. 2010;  191 105-118
  • 8 Nobelprize.org. The Nobel Prize in Physiology or Medicine 2009 - Press Release. Available at: http://nobelprize.org/nobel_prizes/medicine/laureates/2009/press.html Accessed June 20, 2010
  • 9 Hay D C, Zhao D, Fletcher J et al.. Efficient differentiation of hepatocytes from human embryonic stem cells exhibiting markers recapitulating liver development in vivo.  Stem Cells. 2008;  26 894-902
  • 10 The American Liver Foundation .Liver Transplant. 2007. Available at: http://www.liverfoundation.org/downloads/alf_download_134.pdf
  • 11 Sharma R, Greenhough S, Medine C N, Hay D C. Three-dimensional culture of human embryonic stem cell derived hepatic endoderm and its role in bioartificial liver construction.  J Biomed Biotechnol. 2010;  236147
  • 12 Cetrulo C, Cetrulo K, Cetrulo Jr C. Introduction: perinatal stem cells.  Perinatal Stem Cells. 2009;  xv-xvii
  • 13 Ballen K, Haspel R. Cord blood transplants: perinatal stem cells in clinical practice.  Perinatal Stem Cells. 2009;  7-8
  • 14 Breymann C. Use of fetal cells in regenerative medicine.  Perinatal Stem Cells. 2009;  42-25
  • 15 Gearhart J, Pashos E E, Prasad M K. Pluripotency redux—advances in stem-cell research.  N Engl J Med. 2007;  357 1469-1472
  • 16 Byrne J A, Pedersen D A, Clepper L L et al.. Producing primate embryonic stem cells by somatic cell nuclear transfer.  Nature. 2007;  450 497-502
  • 17 Takahashi K, Tanabe K, Ohnuki M et al.. Induction of pluripotent stem cells from adult human fibroblasts by defined factors.  Cell. 2007;  131 861-872
  • 18 Müller L U, Daley G Q, Williams D A. Upping the ante: recent advances in direct reprogramming.  Mol Ther. 2009;  17 947-953
  • 19 Shi Y. Induced pluripotent stem cells, new tools for drug discovery and new hope for stem cell therapies.  Curr Mol Pharmacol. 2009;  2 15-18
  • 20 Yu J, Vodyanik M A, Smuga-Otto K et al.. Induced pluripotent stem cell lines derived from human somatic cells.  Science. 2007;  318 1917-1920
  • 21 Hanna J, Wernig M, Markoulaki S et al.. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin.  Science. 2007;  318 1920-1923
  • 22 Higgs D R. A new dawn for stem-cell therapy.  N Engl J Med. 2008;  358 964-966
  • 23 Biebly A, Bishop A E, Polak J M. Stem cells and tissue engineering. In: Habib N, Gordon M, Levicor N Stem Cell Repair and Regeneration. London; Imperial College Press 2005: 81-93
  • 24 Dupont K M, Sharma K, Stevens H Y, Boerckel J D, García A J, Guldberg R E. Human stem cell delivery for treatment of large segmental bone defects.  Proc Natl Acad Sci U S A. 2010;  107 3305-3310
  • 25 Dubernard J M, Lengelé B, Morelon E et al.. Outcomes 18 months after the first human partial face transplantation.  N Engl J Med. 2007;  357 2451-2460

Sam P MostM.D. F.A.C.S. 

Chief, Division of Facial Plastic and Reconstructive Surgery

801 Welch Road, Stanford, CA 94305

Email: smost@ohns.stanford.edu