Subscribe to RSS
DOI: 10.1055/s-0030-1265200
© Georg Thieme Verlag KG Stuttgart · New York
Differenziertes Schilddrüsenkarzinom – Fortschritte bei der Radioiodablation
Differentiated Thyroid Cancer: New Concept of Radioiodine AblationPublication History
Publication Date:
16 December 2010 (online)
Zusammenfassung
Für die differenzierten Schilddrüsenkarzinome stellt die Radioiodablation eine Standardtherapie dar, eine Ausnahme bilden unifokale, sehr kleine papilläre Schilddrüsenkarzinome. Die erforderliche TSH-Stimulation wird entweder durch eine Schilddrüsenhormonkarenz über 2–3 Wochen oder über rekombinantes humanes TSH (rhTSH) hergestellt. Mit beiden Optionen werden hohe Ablationsraten erzielt. Die Radioiodablation mit Aktivitäten zwischen 1,8 und 3,7 GBq 131I erfolgt grundsätzlich einzeitig. Seit 2010 ist rhTSH in Europa für die Indikationen pT1-4, N0-1, cM0 zugelassen. Aus Beobachtungsstudien an Hochrisikopatienten hat sich kein Hinweis auf die Unterlegenheit eines der Verfahren ergeben. Die fehlende Einschränkung der Nierenclearance unter rhTSH reduziert die Blutaktivität von 131I und die Restkörperdosis. Sofern identische 131I-Aktivitäten unter endogener oder exogener Stimulation verglichen werden, fallen die akuten Nebenwirkungen unter rhTSH geringer aus. Bei der praktischen Durchführung führt ein „Minientzug” von Levothyroxin wenige Tage vor den rhTSH-Injektionen zur Iodverarmung, was für den Ablationserfolg bei der Anwendung niedriger 131I-Aktivitäten vorteilhaft zu sein scheint. Die Erfolgskontrolle der Ablation nach 3–6 Monaten mittels einer diagnostischen 131I-Ganzkörperszintigrafie sollte unter rhTSH durchgeführt werden. Dabei führt insbesondere der Thyreoglobulin (Tg)-Spiegel unter rhTSH zu einer Neubewertung des individuellen Risikos. Für das Patientenmonitoring sollten Tg-Assays der 2. Generation verwendet werden. Da die Radioiodablation im Langzeitverlauf die tumorassoziierte Mortalität, die Rate an Lokalrezidiven sowie die Wahrscheinlichkeit einer späteren Metastasierung günstig beeinflusst, besitzt die Ablation – basierend auf Metaanalysen – einen patientenrelevanten Nutzen.
Abstract
Ablative radioiodine therapy is the treatment of choice in patients with differentiated thyroid cancer, the only exception being the unifocal, very small papillary thyroid cancer. The TSH-stimulation can be achieved by a waiting period for 2–3 weeks after thyroidectomy without medication or by the use of recombinant human TSH (rhTSH). Both options lead to high success rates. “Single dose cure” using activities between 1.85 and 3.7 GBq 131I is standard. Since 2010 rhTSH is approved by the EMA for the indications pT1-4, N0-1, cM0. Survey studies did not find any inferiority of ablation with rhTSH or iatrogenic hypothyroidism in the high-risk patient group. Renal clearance is not reduced after rhTSH administration, thus the 131I blood dose and the whole body doses are lower in patients under rhTSH. Comparing identical 131I activities after endogeneous or exogeneous stimulation, rhTSH will minimize the acute adverse effects of 131I. A short-term withdrawal of levothyroxine some days before rhTSH-injection lowers the iodine plasma level, which may be advantageous for the ablation success if lower 131I activities are used. A rhTSH-based diagnostic 131I whole-body scintigraphy 3–6 months after ablation is standard for therapy control. At this time, the rhTSH-stimulated thyroglobulin-level is essential for a personalized risk stratification. Tg-measurements by a second generation assay should be used for follow-up care. Metaanalyses have shown that radioiodine ablation lowers the mortality rate, the risk of locoregional recurrences and the risk of late metastasizing. Therefore, ablation has shown a clear benefit.
Schlüsselwörter
differenziertes Schilddrüsenkarzinom - Radioiodablation - rekombinantes humanes TSH
Key words
differentiated thyroid cancer - radioiodine ablation - recombinant human TSH
Literatur
- 1 Barbaro D, Boni G, Meucci G. et al . Radioiodine treatment with 30 mCi after recombinant human thyrotropin stimulation in thyroid cancer: effectiveness of postsurgical remnants ablation and possible role of iodine content in L-thyroxine in the outcome of ablation. J Clin Endocrinol Metab. 2003; 88 4110-4115
- 2 Barbaro D, Grosso, Boni G. et al . Recombinant human TSH and ablation of post-surgical thyroid remnants in differentiated thyroid cancer: the effect of pre-treatment with furosemide and furosemide plus lithium. Eur J Nucl Med Mol Imaging. 2010; 37 242-249
- 3 Brown AP, Chen J, Hitchcock YJ. et al . The risk of second primary malignancies up to three decades after treatment of differentiated thyroid cancer. J Clin Endocrinol Metab. 2008; 93 504-515
- 4 Cooper DS, Doherty GM, Haugen BR. et al . Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2009; 19 1167-1214
- 5 Dietlein M, Dressler J, Eschner W. et al . Procedure guidelines for radioiodine therapy of differentiated thyroid cancer (version 3). [German]. Nuklearmedizin. 2007; 46 213-219
- 6 Dietlein M, Dressler J, Eschner W. et al . Guideline for 131I whole-body scintigraphy for differentiated thyroid cancer (version 3). [German]. Nuklearmedizin. 2007; 46 206-212
- 7 Dietlein M, Luster M, Reiners C. Differenziertes Schilddrüsenkarzinom: risikoadaptierte Behandlung und Nachsorge – Update 2010. Thieme-Refresher Onkologie. 2010; 3 (1) R1-R24
- 8 Düren C, Dietlein M, Luster M. et al . The use of thyrogen in the treatment of differentiated thyroid carcinoma: an intraindividual comparison of clinical effects and economic aspects. Exp Clin Endocrinol Diabetes. 2010; in press
- 9 Elisei R, Schlumberger M, Driedger A. et al . Follow-up of low-risk differentiated thyroid cancer patients who underwent radioiodine ablation of postsurgical thyroid remnants after either recombinant human thyrotropin or thyroid hormone withdrawal. J Clin Endocrinol Metab. 2009; 94 4171-4179
- 10 Emmanouilidis N, Müller JA, Jäger MD. et al . Surgery and radio-ablation therapy combined: introducing a 1-wek-condensed MHH-procedure bonding total thyroidectomy and radio-ablation therapy with recombinant human thyreotropin (rhTSH). Eur J Endocrinol. 2009; 161 763-769
- 11 European Medicines Agency (EMEA). . Committee for medicinal products for human use. Post-authorisation summary of positive opinion for Thyrogen. EMEA/CHMP/745393/2009
- 12 Freudenberg L, Jentzen W, Görges R. et al . 124I-positron emission tomography dosimetry in advanced differentiated thyroid cancer: therapeutic impact. Nuklearmedizin. 2007; 46 121-128
- 13 Frigo A, Dardano A, Danese E. et al . Chromosome translocation frequency after radioiodine thyroid remnant ablation: a comparison between rhTSH stimulation and prolonged levothyroxine withdrawal. J Clin Endocrinol Metab. 2009; 94 3472-3476
- 14 Haenscheid H, Lassmann M, Luster M. et al . Iodine biokinetics and dosimetry in radioiodine therapy of thyroid cancer: procedures and results of a prospective international controlled study of ablation after rhTSH or hormone withdrawal. J Nucl Med. 2006; 47 648-654
- 15 Klubo-Gwiezdzinska J, Van Nostrand D, Burman KD. et al . Salivary gland malignancy and radioiodine therapy for thyroid cancer. Thyroid. 2010; 20 647-651
- 16 Lee J, Yun MJ, Nam KH. et al . Quality of life and effectiveness comparisons of thyroxine withdrawal, triiodthyronine withdrawal, and recombinant thyroid-stimulating hormone administration for low-dose radioiodine remnant ablation of differentiated thyroid carcinoma. Thyroid. 2010; 20 173-179
- 17 Lundh C, Lindencrona U, Postgard P. et al . Radiation-induced thyroid stunning: differential effects of 123I, 131I, 99mTc, and 211At on iodide transport and NIS mRNA expression in cultured thyroid cells. J Nucl Med. 2009; 50 1161-1167
- 18 Luster M, Sherman SI, Skarulis MC. et al . Comparison of radioiodine biokinetics following the administration of recombinant human thyroid stimulating hormone (rhTSH) and after thyroid hormone withdrawal in thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2003; 30 1371-1377
- 19 Luster M, Clarke SE, Dietlein M. et al . Guidelines for radioiodine treatment of differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2008; 35 1941-1959
- 20 Machens A, Holzhausen HJ, Dralle H. The prognostic value of primary tumor size in papillary and follicular thyroid carcinoma. Cancer. 2005; 103 2269-2273
- 21 Matovic M, Jankovic SM, Jeremic M. et al . Unexpected effect of furosemid on radioiodine urinary excretion in patients with differentiated thyroid carcinomas treated with iodine-131. Thyroid. 2009; 19 843-848
- 22 Mernagh P, Campell S, Dietlein M. et al . Cost-effectiveness of using recombinant human TSH (rhTSH) prior to radioiodine therapy ablation for thyroid cancer, compared with treating patients in a hypothyroid state: the German perspective. Eur J Endocrinol. 2006; 155 405-414
- 23 Pacini F, Ladenson PW, Schlumberger M. et al . Radioiodine ablation of thyroid remnants after preparation with recombinant human thyrotropin in differentiated thyroid carcinoma: results of an international, randomized, controlled study. J Clin Endocrinol Metab. 2006; 91 926-932
- 24 Pacini F, Schlumberger M, Dralle H. et al . European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium. Eur J Endocrinol. 2006; 154 787-803
- 25 Pacini F, Castagna MG, Brilli L. et al . ESMO Guidelines Working Group. Differentiated thyroid cancer: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann Oncol. 2009; 20 (S 04) 143-146
- 26 Park EK, Chung JK, Lim IH. et al . Recurrent/metastatic thyroid carcinomas false negative for serum thyroglobulin but positive by posttherapy I-131 whole body scans. Eur J Nucl Med Mol Imaging. 2009; 36 172-179
- 27 Pelizzo MR, Boschin IM, Toniato A. et al . Natural history, diagnosis, treatment and outcome of papillary thyroid microcarcinoma (PTMC): a monoinstitutional 12-year experience. Nucl Med Commun. 2004; 25 547-552
- 28 Pitoia F, Ilera V, Zanchetta MB. et al . Optimum recombinant human thyrotropin dose in patients with differentiated thyroid carcinoma and end-stage renal disease. Endocrine Pract. 2008; 14 961-966
- 29 Pitoia F, Ward L, Wohllk N. et al . Recommendations of the Latin American Thyroid Society on diagnosis and management of differentiated thyroid cancer. Arq Bras Endocrinol Metab. 2009; 53 884-897
- 30 Reiners C. Diagnostik, Therapie und Nachsorge des Schilddrüsenkarzinoms.. 3. Aufl. Bremen, London, Boston: Unimed; 2010
- 31 Rosário PW, Ribeiro Borges MA, Purisch S. Preparation with recombinant human thyroid-stimulating hormone for thyroid remnant ablation with 131I is associated with lowered radiotoxicity. J Nucl Med. 2008; 49 1776-1782
- 32 Rubino C, de Vathaire F, Dottorini ME. et al . Second primary malignancy in thyroid cancer patients. Br J Cancer. 2003; 89 1638-1644
- 33 Sawka AM, Thephamongkhol K, Brouwers M. et al . Clinical review 170: A systematic review and metaanalysis of the effectiveness of radioactive iodine remnant ablation for well-differentiated thyroid cancer. J Clin Endocrinol Metab. 2004; 89 3668-3676
- 34 Sawka AM, Brierley JD, Tsang RW. et al . An updated systematic review and commentary examining the effectiveness of radioactive iodine remnant ablation in well-differentiated thyroid cancer. Endocrinol Metab Clin N Am. 2008; 37 457-480
- 35 Schlumberger M, De Vathaire F, Ceccarelli C. et al . Exposure to radioactive iodine-131 for scintigraphy or therapy does not preclude pregnancy in thyroid cancer patients. J Nucl Med. 1996; 37 606-612
- 36 Serhal DI, Nasrallah MP, Arafah BM. Rapid rise in serum thyrotropin concentrations after thyroidectomy or withdrawal of suppressive thyroxine therapy in preparation for radioactive iodine administration to patients with differentiated thyroid cancer. J Clin Endocrinol Metab. 2004; 89 3285-3289
- 37 Sobin LH, Gospodarowicz M, Wittekind C. TNM Classification of Malignant Tumours.. 7th Edition, Wiley-Liss, New York; 2009
- 38 Spencer C, Fatemi S, Singer. et al . Serum basal thyroglobulin measured by a second-generation assay correlates with the recombinant human thyrotropin-stimulated thyroglobulin response in patients treated for differentiated thyroid cancer. Thyroid. 2010; 20 587-595
- 39 Tuttle RM, Brokhin M, Omry G. et al . Recombinant human TSH-assisted radioactive iodine remnant ablation achieves short-term clinical recurrence rates similar to those of traditional thyroid hormone withdrawal. J Nucl Med. 2008; 49 764-770
- 40 Tuttle RM, Lopez N, Leboeuf R. et al . Radioactive iodine administration for thyroid remnant ablation following recombinant human thyroid stimulating hormone preparation also has an important adjuvant therapy function. Thyroid. 2010; 20 257-263
Korrespondenzadresse
Prof. Dr. Markus Dietlein
Klinik und Poliklinik für
Nuklearmedizin
Universitätsklinikum Köln
Kerpener Straße 62
50937 Köln
Phone: +49/221/478 5856
Fax: +49/221/478 6777
Email: markus.dietlein@uni-koeln.de