ABSTRACT
Hepatitis A and hepatitis C viruses (HAV and HCV) are both positive-strand ribonucleic acid (RNA) viruses with hepatotropic lifestyles. Despite several important differences, they share many biological and molecular features and similar genome replication schemes. Despite this, HAV infections are usually effectively controlled by the host with elimination of the virus, whereas HCV most often is able to establish lifelong persistent infection. The mechanisms underlying this difference are unknown. The cellular helicases RIG-I and MDA5, and Toll-like receptor 3, are pattern recognition receptors that sense virus-derived RNAs within hepatocytes in the liver. Activation of these receptors leads to their interaction with specific adaptor proteins, mitochondrial antiviral signaling protein (MAVS) and TIR-domain-containing adapter-inducing interferon-β (TRIF), respectively, which engage downstream kinases to activate two crucial transcription factors, nuclear factor kappa B (NF-κB) and interferon regulatory factor 3 (IRF3). This results in the induction of interferons (IFNs) and IFN-stimulated genes that ultimately establish an antiviral state. These signaling pathways are central to host antiviral defense and thus frequent targets for viral interference. Both HAV and HCV express proteases that target signal transduction through these pathways and that block the induction of IFNs upon sensing of viral RNA by these receptors. An understanding of the differences and similarities in the early innate immune responses to these infections is likely to provide important insights into the mechanism underlying the long-term persistence of HCV.
KEYWORDS
Hepatitis C virus - hepatitis A virus - interferon
REFERENCES
1 Martin A, Lemon S M. The molecular biology of hepatitis A virus . In: Ou J Hepatitis Viruses. Norwell, MA; Kluwer Academic Publishers 2002: 23-50
2 Lemon S M, Walker C, Alter M J et al.. Hepatitis C viruses . In: Knipe DM, Howley PM Fields Virology. 5th ed. Philadelphia; Lippincott Williams & Wilkins 2006: 1253-1304
3
Wakita T, Pietschmann T, Kato T et al..
Production of infectious hepatitis C virus in tissue culture from a cloned viral genome.
Nat Med.
2005;
11(7)
791-796
4
Lindenbach B D, Evans M J, Syder A J et al..
Complete replication of hepatitis C virus in cell culture.
Science.
2005;
309(5734)
623-626
5
Yi M, Villanueva R A, Thomas D L, Wakita T, Lemon S M.
Production of infectious genotype 1a hepatitis C virus (Hutchinson strain) in cultured human hepatoma cells.
Proc Natl Acad Sci U S A.
2006;
103(7)
2310-2315
6
Ebihara T, Shingai M, Matsumoto M, Wakita T, Seya T.
Hepatitis C virus-infected hepatocytes extrinsically modulate dendritic cell maturation to activate T cells and natural killer cells.
Hepatology.
2008;
48(1)
48-58
7
Brack K, Frings W, Dotzauer A, Vallbracht A.
A cytopathogenic, apoptosis-inducing variant of hepatitis A virus.
J Virol.
1998;
72(4)
3370-3376
8
Dienstag J L, Feinstone S M, Purcell R H et al..
Experimental infection of chimpanzees with hepatitis A virus.
J Infect Dis.
1975;
132(5)
532-545
9
LeDuc J W, Lemon S M, Keenan C M, Graham R R, Marchwicki R H, Binn L N.
Experimental infection of the New World owl monkey (Aotus trivirgatus) with hepatitis A virus.
Infect Immun.
1983;
40(2)
766-772
10
Bradley D W, Maynard J E, Popper H et al..
Persistent non-A, non-B hepatitis in experimentally infected chimpanzees.
J Infect Dis.
1981;
143(2)
210-218
11
Lindenbach B D, Meuleman P, Ploss A et al..
Cell culture-grown hepatitis C virus is infectious in vivo and can be recultured in vitro.
Proc Natl Acad Sci U S A.
2006;
103(10)
3805-3809
12
Martin A, Lemon S M.
Hepatitis A virus: from discovery to vaccines.
Hepatology.
2006;
43(2, Suppl 1)
S164-S172
13
Schulman A N, Dienstag J L, Jackson D R et al..
Hepatitis A antigen particles in liver, bile, and stool of chimpanzees.
J Infect Dis.
1976;
134(1)
80-84
14
Rosenblum L S, Villarino M E, Nainan O V et al..
Hepatitis A outbreak in a neonatal intensive care unit: risk factors for transmission and evidence of prolonged viral excretion among preterm infants.
J Infect Dis.
1991;
164(3)
476-482
15
Glikson M, Galun E, Oren R, Tur-Kaspa R, Shouval D.
Relapsing hepatitis A. Review of 14 cases and literature survey.
Medicine (Baltimore).
1992;
71(1)
14-23
16
Sjogren M H, Tanno H, Fay O et al..
Hepatitis A virus in stool during clinical relapse.
Ann Intern Med.
1987;
106(2)
221-226
17
Chisari F V.
Unscrambling hepatitis C virus-host interactions.
Nature.
2005;
436(7053)
930-932
18
Cooper S, Erickson A L, Adams E J et al..
Analysis of a successful immune response against hepatitis C virus.
Immunity.
1999;
10(4)
439-449
19
Lechner F, Wong D K, Dunbar P R et al..
Analysis of successful immune responses in persons infected with hepatitis C virus.
J Exp Med.
2000;
191(9)
1499-1512
20
Thimme R, Oldach D, Chang K M et al..
Determinants of viral clearance and persistence during acute hepatitis C virus infection.
J Exp Med.
2001;
194(10)
1395-1406
21
Shoukry N H, Grakoui A, Houghton M et al..
Memory CD8+ T cells are required for protection from persistent hepatitis C virus infection.
J Exp Med.
2003;
197(12)
1645-1655
22
Grakoui A, Shoukry N H, Woollard D J et al..
HCV persistence and immune evasion in the absence of memory T cell help.
Science.
2003;
302(5645)
659-662
23
Fleischer B, Fleischer S, Maier K et al..
Clonal analysis of infiltrating T lymphocytes in liver tissue in viral hepatitis A.
Immunology.
1990;
69(1)
14-19
24
Houghton M, Abrignani S.
Prospects for a vaccine against the hepatitis C virus.
Nature.
2005;
436(7053)
961-966
25
Lemon S M, Murphy P C, Provost P J et al..
Immunoprecipitation and virus neutralization assays demonstrate qualitative differences between protective antibody responses to inactivated hepatitis A vaccine and passive immunization with immune globulin.
J Infect Dis.
1997;
176(1)
9-19
26
Iwasaki A, Medzhitov R.
Regulation of adaptive immunity by the innate immune system.
Science.
2010;
327(5963)
291-295
27
Kawai T, Akira S.
Toll-like receptor and RIG-I-like receptor signaling.
Ann N Y Acad Sci.
2008;
1143
1-20
28
Takeuchi O, Akira S.
Innate immunity to virus infection.
Immunol Rev.
2009;
227(1)
75-86
29
Yoneyama M, Kikuchi M, Natsukawa T et al..
The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses.
Nat Immunol.
2004;
5(7)
730-737
30
Ting J P, Duncan J A, Lei Y.
How the noninflammasome NLRs function in the innate immune system.
Science.
2010;
327(5963)
286-290
31
Yoneyama M, Kikuchi M, Matsumoto K et al..
Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity.
J Immunol.
2005;
175(5)
2851-2858
32
Saito T, Hirai R, Loo Y M et al..
Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2.
Proc Natl Acad Sci U S A.
2007;
104(2)
582-587
33
Kang D C, Gopalkrishnan R V, Wu Q, Jankowsky E, Pyle A M, Fisher P B.
mda-5: An interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties.
Proc Natl Acad Sci U S A.
2002;
99(2)
637-642
34
Kovacsovics M, Martinon F, Micheau O, Bodmer J L, Hofmann K, Tschopp J.
Overexpression of Helicard, a CARD-containing helicase cleaved during apoptosis, accelerates DNA degradation.
Curr Biol.
2002;
12(10)
838-843
35
Andrejeva J, Childs K S, Young D F et al..
The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-beta promoter.
Proc Natl Acad Sci U S A.
2004;
101(49)
17264-17269
36
Johnson C L, Gale Jr M.
CARD games between virus and host get a new player.
Trends Immunol.
2006;
27(1)
1-4
37
Zeng W, Sun L, Jiang X et al..
Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity.
Cell.
2010;
141(2)
315-330
38
Hornung V, Ellegast J, Kim S et al..
5′-Triphosphate RNA is the ligand for RIG-I.
Science.
2006;
314(5801)
994-997
39
Plumet S, Herschke F, Bourhis J M, Valentin H, Longhi S, Gerlier D.
Cytosolic 5′-triphosphate ended viral leader transcript of measles virus as activator of the RIG I-mediated interferon response.
PLoS ONE.
2007;
2(3)
e279
40
Kato H, Takeuchi O, Mikamo-Satoh E et al..
Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5.
J Exp Med.
2008;
205(7)
1601-1610
41
Saito T, Gale Jr M.
Differential recognition of double-stranded RNA by RIG-I-like receptors in antiviral immunity.
J Exp Med.
2008;
205(7)
1523-1527
42
Saito T, Owen D M, Jiang F, Marcotrigiano J, Gale Jr M.
Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA.
Nature.
2008;
454(7203)
523-527
43
Gitlin L, Barchet W, Gilfillan S et al..
Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus.
Proc Natl Acad Sci U S A.
2006;
103(22)
8459-8464
44
Sumpter Jr R, Loo Y M, Foy E et al..
Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-I.
J Virol.
2005;
79(5)
2689-2699
45
Kato H, Takeuchi O, Sato S et al..
Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses.
Nature.
2006;
441(7089)
101-105
46
Loo Y M, Fornek J, Crochet N et al..
Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity.
J Virol.
2008;
82(1)
335-345
47
McCartney S A, Thackray L B, Gitlin L, Gilfillan S, Virgin H W, Colonna M.
MDA-5 recognition of a murine norovirus.
PLoS Pathog.
2008;
4(7)
e1000108
48
Venkataraman T, Valdes M, Elsby R et al..
Loss of DExD/H box RNA helicase LGP2 manifests disparate antiviral responses.
J Immunol.
2007;
178(10)
6444-6455
49
Satoh T, Kato H, Kumagai Y et al..
LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses.
Proc Natl Acad Sci U S A.
2010;
107(4)
1512-1517
50
Seth R B, Sun L, Ea C K, Chen Z J.
Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3.
Cell.
2005;
122(5)
669-682
51
Kawai T, Takahashi K, Sato S et al..
IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction.
Nat Immunol.
2005;
6(10)
981-988
52
Meylan E, Curran J, Hofmann K et al..
Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus.
Nature.
2005;
437(7062)
1167-1172
53
Xu L G, Wang Y Y, Han K J, Li L Y, Zhai Z, Shu H B.
VISA is an adapter protein required for virus-triggered IFN-beta signaling.
Mol Cell.
2005;
19(6)
727-740
54
Li X D, Sun L, Seth R B, Pineda G, Chen Z J.
Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity.
Proc Natl Acad Sci U S A.
2005;
102(49)
17717-17722
55
Wajant H, Henkler F, Scheurich P.
The TNF-receptor-associated factor family: scaffold molecules for cytokine receptors, kinases and their regulators.
Cell Signal.
2001;
13(6)
389-400
56
Lamothe B, Campos A D, Webster W K, Gopinathan A, Hur L, Darnay B G.
The RING domain and first zinc finger of TRAF6 coordinate signaling by interleukin-1, lipopolysaccharide, and RANKL.
J Biol Chem.
2008;
283(36)
24871-24880
57
Chen Z J.
Ubiquitin signalling in the NF-kappaB pathway.
Nat Cell Biol.
2005;
7(8)
758-765
58
Deng L, Wang C, Spencer E et al..
Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain.
Cell.
2000;
103(2)
351-361
59
Takeuchi O, Akira S.
MDA5/RIG-I and virus recognition.
Curr Opin Immunol.
2008;
20(1)
17-22
60
Oganesyan G, Saha S K, Guo B et al..
Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response.
Nature.
2006;
439(7073)
208-211
61
Kawai T, Akira S.
TLR signaling.
Semin Immunol.
2007;
19(1)
24-32
62
Alexopoulou L, Holt A C, Medzhitov R, Flavell R A.
Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3.
Nature.
2001;
413(6857)
732-738
63
Medzhitov R, Janeway Jr C A.
Decoding the patterns of self and nonself by the innate immune system.
Science.
2002;
296(5566)
298-300
64
Edelmann K H, Richardson-Burns S, Alexopoulou L, Tyler K L, Flavell R A, Oldstone M B.
Does Toll-like receptor 3 play a biological role in virus infections?.
Virology.
2004;
322(2)
231-238
65
Wang T, Town T, Alexopoulou L, Anderson J F, Fikrig E, Flavell R A.
Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis.
Nat Med.
2004;
10(12)
1366-1373
66
Tabeta K, Georgel P, Janssen E et al..
Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection.
Proc Natl Acad Sci U S A.
2004;
101(10)
3516-3521
67
Le Goffic R, Balloy V, Lagranderie M et al..
Detrimental contribution of the Toll-like receptor (TLR)3 to influenza A virus-induced acute pneumonia.
PLoS Pathog.
2006;
2(6)
e53
68
Negishi H, Osawa T, Ogami K et al..
A critical link between Toll-like receptor 3 and type II interferon signaling pathways in antiviral innate immunity.
Proc Natl Acad Sci U S A.
2008;
105(51)
20446-20451
69
Bell J K, Botos I, Hall P R et al..
The molecular structure of the Toll-like receptor 3 ligand-binding domain.
Proc Natl Acad Sci U S A.
2005;
102(31)
10976-10980
70
Choe J, Kelker M S, Wilson I A.
Crystal structure of human toll-like receptor 3 (TLR3) ectodomain.
Science.
2005;
309(5734)
581-585
71
Xu Y, Tao X, Shen B et al..
Structural basis for signal transduction by the Toll/interleukin-1 receptor domains.
Nature.
2000;
408(6808)
111-115
72
Bell J K, Askins J, Hall P R, Davies D R, Segal D M.
The dsRNA binding site of human Toll-like receptor 3.
Proc Natl Acad Sci U S A.
2006;
103(23)
8792-8797
73
de Bouteiller O, Merck E, Hasan U A et al..
Recognition of double-stranded RNA by human toll-like receptor 3 and downstream receptor signaling requires multimerization and an acidic pH.
J Biol Chem.
2005;
280(46)
38133-38145
74
Okahira S, Nishikawa F, Nishikawa S, Akazawa T, Seya T, Matsumoto M.
Interferon-beta induction through toll-like receptor 3 depends on double-stranded RNA structure.
DNA Cell Biol.
2005;
24(10)
614-623
75
O'Neill L A, Bowie A G.
The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling.
Nat Rev Immunol.
2007;
7(5)
353-364
76
O'Neill L A, Fitzgerald K A, Bowie A G.
The Toll-IL-1 receptor adaptor family grows to five members.
Trends Immunol.
2003;
24(6)
286-290
77
Bowie A, O'Neill L A.
The interleukin-1 receptor/Toll-like receptor superfamily: signal generators for pro-inflammatory interleukins and microbial products.
J Leukoc Biol.
2000;
67(4)
508-514
78
Yamamoto M, Sato S, Hemmi H et al..
Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway.
Science.
2003;
301(5633)
640-643
79
Takeuchi O, Akira S.
MyD88 as a bottle neck in Toll/IL-1 signaling.
Curr Top Microbiol Immunol.
2002;
270
155-167
80
Muzio M, Ni J, Feng P, Dixit V M.
IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling.
Science.
1997;
278(5343)
1612-1615
81
Walsh D E, Greene C M, Carroll T P et al..
Interleukin-8 up-regulation by neutrophil elastase is mediated by MyD88/IRAK/TRAF-6 in human bronchial epithelium.
J Biol Chem.
2001;
276(38)
35494-35499
82
Muzio M, Natoli G, Saccani S, Levrero M, Mantovani A.
The human toll signaling pathway: divergence of nuclear factor kappaB and JNK/SAPK activation upstream of tumor necrosis factor receptor-associated factor 6 (TRAF6).
J Exp Med.
1998;
187(12)
2097-2101
83
Oshiumi H, Matsumoto M, Funami K, Akazawa T, Seya T.
TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction.
Nat Immunol.
2003;
4(2)
161-167
84
Han K J, Su X, Xu L G, Bin L H, Zhang J, Shu H B.
Mechanisms of the TRIF-induced interferon-stimulated response element and NF-kappaB activation and apoptosis pathways.
J Biol Chem.
2004;
279(15)
15652-15661
85
Sato S, Sugiyama M, Yamamoto M et al..
Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling.
J Immunol.
2003;
171(8)
4304-4310
86
Meylan E, Burns K, Hofmann K et al..
RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation.
Nat Immunol.
2004;
5(5)
503-507
87
Carty M, Goodbody R, Schröder M, Stack J, Moynagh P N, Bowie A G.
The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling.
Nat Immunol.
2006;
7(10)
1074-1081
88
Sasai M, Tatematsu M, Oshiumi H et al..
Direct binding of TRAF2 and TRAF6 to TICAM-1/TRIF adaptor participates in activation of the Toll-like receptor 3/4 pathway.
Mol Immunol.
2010;
47(6)
1283-1291
89
Kaiser W J, Offermann M K.
Apoptosis induced by the toll-like receptor adaptor TRIF is dependent on its receptor interacting protein homotypic interaction motif.
J Immunol.
2005;
174(8)
4942-4952
90
Funami K, Sasai M, Oshiumi H, Seya T, Matsumoto M.
Homo-oligomerization is essential for Toll/interleukin-1 receptor domain-containing adaptor molecule-1-mediated NF-kappaB and interferon regulatory factor-3 activation.
J Biol Chem.
2008;
283(26)
18283-18291
91
Jiang Z, Mak T W, Sen G, Li X.
Toll-like receptor 3-mediated activation of NF-kappaB and IRF3 diverges at Toll-IL-1 receptor domain-containing adapter inducing IFN-beta.
Proc Natl Acad Sci U S A.
2004;
101(10)
3533-3538
92
Meylan E, Tschopp J.
The RIP kinases: crucial integrators of cellular stress.
Trends Biochem Sci.
2005;
30(3)
151-159
93
Grimm S, Stanger B Z, Leder P.
RIP and FADD: two “death domain”-containing proteins can induce apoptosis by convergent, but dissociable, pathways.
Proc Natl Acad Sci U S A.
1996;
93(20)
10923-10927
94
Sun X, Lee J, Navas T, Baldwin D T, Stewart T A, Dixit V M.
RIP3, a novel apoptosis-inducing kinase.
J Biol Chem.
1999;
274(24)
16871-16875
95
Foy E, Li K, Wang C et al..
Regulation of interferon regulatory factor-3 by the hepatitis C virus serine protease.
Science.
2003;
300(5622)
1145-1148
96
Li X D, Sun L, Seth R B, Pineda G, Chen Z J.
Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity.
Proc Natl Acad Sci U S A.
2005;
102(49)
17717-17722
97
Meylan E, Curran J, Hofmann K et al..
Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus.
Nature.
2005;
437(7062)
1167-1172
98
Baril M, Racine M E, Penin F, Lamarre D.
MAVS dimer is a crucial signaling component of innate immunity and the target of hepatitis C virus NS3/4A protease.
J Virol.
2009;
83(3)
1299-1311
99
Loo Y M, Owen D M, Li K et al..
Viral and therapeutic control of IFN-beta promoter stimulator 1 during hepatitis C virus infection.
Proc Natl Acad Sci U S A.
2006;
103(15)
6001-6006
100
Liang Y, Ishida H, Lenz O et al..
Antiviral suppression vs restoration of RIG-I signaling by hepatitis C protease and polymerase inhibitors.
Gastroenterology.
2008;
135(5)
1710-1718, e2
101
Cheng G, Zhong J, Chisari F V.
Inhibition of dsRNA-induced signaling in hepatitis C virus-infected cells by NS3 protease-dependent and -independent mechanisms.
Proc Natl Acad Sci U S A.
2006;
103(22)
8499-8504
102
Otsuka M, Kato N, Moriyama M et al..
Interaction between the HCV NS3 protein and the host TBK1 protein leads to inhibition of cellular antiviral responses.
Hepatology.
2005;
41(5)
1004-1012
103
Tasaka M, Sakamoto N, Itakura Y et al..
Hepatitis C virus non-structural proteins responsible for suppression of the RIG-I/Cardif-induced interferon response.
J Gen Virol.
2007;
88(Pt 12)
3323-3333
104
Lau D T, Fish P M, Sinha M, Owen D M, Lemon S M, Gale Jr M.
Interferon regulatory factor-3 activation, hepatic interferon-stimulated gene expression, and immune cell infiltration in hepatitis C virus patients.
Hepatology.
2008;
47(3)
799-809
105
Chen Z, Benureau Y, Rijnbrand R et al..
GB virus B disrupts RIG-I signaling by NS3/4A-mediated cleavage of the adaptor protein MAVS.
J Virol.
2007;
81(2)
964-976
106
Martin A, Bodola F, Sangar D V et al..
Chronic hepatitis associated with GB virus B persistence in a tamarin after intrahepatic inoculation of synthetic viral RNA.
Proc Natl Acad Sci U S A.
2003;
100(17)
9962-9967
107
Li K, Foy E, Ferreon J C et al..
Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF.
Proc Natl Acad Sci U S A.
2005;
102(8)
2992-2997
108
Dansako H, Ikeda M, Ariumi Y, Wakita T, Kato N.
Double-stranded RNA-induced interferon-beta and inflammatory cytokine production modulated by hepatitis C virus serine proteases derived from patients with hepatic diseases.
Arch Virol.
2009;
154(5)
801-810
109
Jouan L, Melancon P, Rodrigue-Gervais I et al..
Distinct antiviral signaling pathways in primary human hepatocytes and their differential disruption by HCV NS3 protease.
J Hepatol.
2010;
52(2)
167-175
110
Li K, Chen Z, Kato N, Gale Jr M, Lemon S M.
Distinct poly(I-C) and virus-activated signaling pathways leading to interferon-beta production in hepatocytes.
J Biol Chem.
2005;
280
16739-16747
111
Wang N, Liang Y, Devaraj S, Wang J, Lemon S M, Li K.
Toll-like receptor 3 mediates establishment of an antiviral state against hepatitis C virus in hepatoma cells.
J Virol.
2009;
83(19)
9824-9834
112
Ferreon J C, Ferreon A C, Li K, Lemon S M.
Molecular determinants of TRIF proteolysis mediated by the hepatitis C virus NS3/4A protease.
J Biol Chem.
2005;
280
20483-20492
113
Probst C, Jecht M, Gauss-Müller V.
Processing of proteinase precursors and their effect on hepatitis A virus particle formation.
J Virol.
1998;
72(10)
8013-8020
114
Schultheiss T, Kusov Y Y, Gauss-Müller V.
Proteinase 3C of hepatitis A virus (HAV) cleaves the HAV polyprotein P2-P3 at all sites including VP1/2A and 2A/2B.
Virology.
1994;
198(1)
275-281
115
Tesar M, Pak I, Jia X Y, Richards O C, Summers D F, Ehrenfeld E.
Expression of hepatitis A virus precursor protein P3 in vivo and in vitro: polyprotein processing of the 3CD cleavage site.
Virology.
1994;
198(2)
524-533
116
Kusov Y, Gauss-Müller V.
Improving proteolytic cleavage at the 3A/3B site of the hepatitis A virus polyprotein impairs processing and particle formation, and the impairment can be complemented in trans by 3AB and 3ABC.
J Virol.
1999;
73(12)
9867-9878
117
Jürgensen D, Kusov Y Y, Fäcke M, Kräusslich H G, Gauss-Müller V.
Cell-free translation and proteolytic processing of the hepatitis A virus polyprotein.
J Gen Virol.
1993;
74(Pt 4)
677-683
118
Beneduce F, Ciervo A, Morace G.
Site-directed mutagenesis of hepatitis A virus protein 3A: effects on membrane interaction.
Biochim Biophys Acta.
1997;
1326(1)
157-165
119
Ciervo A, Beneduce F, Morace G.
Polypeptide 3AB of hepatitis A virus is a transmembrane protein.
Biochem Biophys Res Commun.
1998;
249(1)
266-274
120
Pisani G, Beneduce F, Gauss-Müller V, Morace G.
Recombinant expression of hepatitis A virus protein 3A: interaction with membranes.
Biochem Biophys Res Commun.
1995;
211(2)
627-638
121
Weitz M, Baroudy B M, Maloy W L, Ticehurst J R, Purcell R H.
Detection of a genome-linked protein (VPg) of hepatitis A virus and its comparison with other picornaviral VPgs.
J Virol.
1986;
60(1)
124-130
122
James M N.
The peptidases from fungi and viruses.
Biol Chem.
2006;
387(8)
1023-1029
123
Konduru K, Kaplan G G.
Determinants in 3Dpol modulate the rate of growth of Hepatitis A Virus.
J Virol.
2010;
84(16)
8342-8347
124
Parsley T B, Cornell C T, Semler B L.
Modulation of the RNA binding and protein processing activities of poliovirus polypeptide 3CD by the viral RNA polymerase domain.
J Biol Chem.
1999;
274(18)
12867-12876
125
Ypma-Wong M F, Dewalt P G, Johnson V H, Lamb J G, Semler B L.
Protein 3CD is the major poliovirus proteinase responsible for cleavage of the P1 capsid precursor.
Virology.
1988;
166(1)
265-270
126
Pathak H B, Oh H S, Goodfellow I G, Arnold J J, Cameron C E.
Picornavirus genome replication: roles of precursor proteins and rate-limiting steps in oriI-dependent VPg uridylylation.
J Biol Chem.
2008;
283(45)
30677-30688
127
Yang Y, Liang Y, Qu L et al..
Disruption of innate immunity due to mitochondrial targeting of a picornaviral protease precursor.
Proc Natl Acad Sci U S A.
2007;
104(17)
7253-7258
128
Brack K, Berk I, Magulski T, Lederer J, Dotzauer A, Vallbracht A.
Hepatitis A virus inhibits cellular antiviral defense mechanisms induced by double-stranded RNA.
J Virol.
2002;
76(23)
11920-11930
129
Fensterl V, Grotheer D, Berk I, Schlemminger S, Vallbracht A, Dotzauer A.
Hepatitis A virus suppresses RIG-I-mediated IRF-3 activation to block induction of beta interferon.
J Virol.
2005;
79(17)
10968-10977
130
Rebsamen M, Meylan E, Curran J, Tschopp J.
The antiviral adaptor proteins Cardif and Trif are processed and inactivated by caspases.
Cell Death Differ.
2008;
15(11)
1804-1811
131
Lei Y, Moore C B, Liesman R M et al..
MAVS-mediated apoptosis and its inhibition by viral proteins.
PLoS ONE.
2009;
4(5)
e5466
132
Takahashi K, Asabe S, Wieland S et al..
Plasmacytoid dendritic cells sense hepatitis C virus-infected cells, produce interferon, and inhibit infection.
Proc Natl Acad Sci U S A.
2010;
107(16)
7431-7436
133
Dolganiuc A, Oak S, Kodys K et al..
Hepatitis C core and nonstructural 3 proteins trigger toll-like receptor 2-mediated pathways and inflammatory activation.
Gastroenterology.
2004;
127(5)
1513-1524
Stanley M LemonM.D.
Division of Infectious Diseases, Department of Medicine, Center for Translational Research, Inflammatory Diseases Institute
Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295
Email: smlemon@UTMB.EDU
Email: stanley_lemon@med.unc.edu