Horm Metab Res 2011; 43(2): 86-91
DOI: 10.1055/s-0030-1269855
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

The Profile of Fatty Acids in Frontal Cortex of Rats Depends on the Type of Fat Used in the Diet and Correlates with Neuropeptidase Activities

A. B. Segarra1 , J. I. Ruiz-Sanz2 , M. B. Ruiz-Larrea2 , M. Ramírez-Sánchez1 , M.  de Gasparo3 , I. Banegas1 , M. Martínez-Cañamero4 , F. Vives5 , I. Prieto1
  • 1Department of Health Sciences, Unit of Physiology, University of Jaén, Jaén, Spain
  • 2Department of Physiology, Medicine and Dentistry School, University of the Basque Country, Bilbao, Spain
  • 3Rue es Planches 5, Rossemaison, Switzerland
  • 4Department of Health Sciences, Unit of Microbiology, University of Jaén, Jaén, Spain
  • 5Institute of Neurosciences “Federico Olóriz” University of Granada, Granada, Spain
Further Information

Publication History

received 22.07.2010

accepted 03.11.2010

Publication Date:
30 November 2010 (online)

Abstract

The kind of fat in the diet modifies the profile of fatty acids in brain and also affects aminopeptidase activities in tissues. Although modifications in brain fatty acids, neurotransmitters, or enzymes due to dietary fat composition have been reported, no direct relationship has yet been described between specific brain fatty acid changes and neuropeptide metabolism following the fat composition of the diet. We investigated the lipid profile and some neuropeptidase activities in the frontal cortex of adult male rats after a period in which diets were supplemented with fatty acids differing in their degrees of saturation such as fish oil (rich in polyunsaturated fatty acids, PUFAs), olive oil (rich in monounsaturated fatty acids, MUFAs), and coconut oil (rich in saturated fatty acids, SAFAs). It is observed that the diet composition affects fatty acid distribution in the brain. Although there is no change of global aminopeptidase/neuropeptidase, their activities in the brain correlate positively or negatively with the dietary fat composition. It is hypothesized that fatty acid in the diet modifies membrane fluidity, peptidases tertiary structure, and therefore, the availability and function of neuropeptides. The present results support the notion that cognitive functions may be modulated depending on the type of fat used in the diet.

References

  • 1 Haag M, Dippenaar NG. Dietary fats, fatty acids and insulin resistance: short review of a multifaceted connection.  Med Sci Monit. 2005;  11 RA359-RA367
  • 2 Youdim KA, Martin A, Joseph JA. Essential fatty acids and the brain: possible health implications.  Int J Dev Neurosci. 2000;  18 383-399
  • 3 Dziedzic B, Szemraj J, Bartkowiak J, Walczewska A. Various dietary fats differentially change the gene expression of neuropeptides involved in body weight regulation in rats.  J Neuroendocrinol. 2007;  19 364-373
  • 4 Song C, Manku MS, Horrobin DF. Long-chain polyunsaturated fatty acids modulate interleukin-1beta-induced changes in behavior, monoaminergic neurotransmitters, and brain inflammation in rats.  J Nutr. 2008;  138 954-963
  • 5 Kodas E, Galineau L, Bodard S, Vancassel S, Guilloteau D, Besnard JC, Chalon S. Serotoninergic neurotransmission is affected by n-3 polyunsaturated fatty acids in the rat.  J Neurochem. 2004;  89 695-702
  • 6 Checler F. Methods in neurotransmitter and neuropeptide research. Parvez SH, Naoi M, Nagatsu T, Parvez S (Eds) Amsterdam: Elsevier; 1993
  • 7 Banegas I, Prieto I, Alba F, Vives F, Araque A, Segarra AB, Durán R, de Gasparo M, Ramírez M. Angiotensinase activity is asymmetrically distributed in the amygdala, hippocampus and prefrontal cortex of the rat.  Behav Brain Res. 2005;  156 321-326
  • 8 Segarra AB, Ramírez M, Banegas I, Alba F, Vives F, de Gasparo M, Ortega E, Ruiz E, Prieto I. Dietary fat influences testosterone, cholesterol, aminopeptidase A, and blood pressure in male rats.  Horm Metab Res. 2008;  40 289-291
  • 9 Paxinos G, Watson C. The Rat brain in stereotaxic coordinates. 4th ed London: Academic Press; 1998
  • 10 Segarra AB, Ramírez M, Villarejo AB, Banegas I, Vives F, de Gasparo M, Alba F, Cobo J, Prieto I. Hypothalamic and plasmatic angiotensin metabolism in L-NAME treated rats.  Horm Metab Res. 2010;  42 222-224
  • 11 Bradford MM. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding.  Anal Biochem. 1976;  72 248-254
  • 12 Folch J, Less M, Sloane-Stanley GH. A simple method for the isolation and purification of total lipids from animal tissues.  J Biol Chem. 1957;  226 497-509
  • 13 Lepage G, Roy CG. Direct transesterification of all classes of lipids in a one step reaction.  J Lipid Res. 1986;  27 114-120
  • 14 Ruiz-Sanz JI, Navarro R, Martínez R, Martín C, Lacort M, Matorras R, Ruiz-Larrea M-B. 17beta-estradiol affects in vivo the low density lipoprotein composition, particle size, and oxidizability.  Free Radic Biol Med. 2001;  31 391-397
  • 15 Bodineau L, Frugiere A, Marc Y, Claperon C, Llorens-Cortes C. Aminopeptidase A inhibitors as centrally acting antihypertensive agents.  Heart Fail Rev. 2008;  13 311-319
  • 16 Yaqoob P, Sherrington EJ, Jeffery NM, Sanderson P, Harvey DJ, Newsholme EA, Calder PC. Comparison of the effects of a range of dietary lipids upon serum and tissue lipid composition in the rat.  Int J Biochem Cell Biol. 1995;  27 297-310
  • 17 McIlwain H. Biochemistry and the central nervous system. 2nd ed Boston: Little Brown and Co.; 1959
  • 18 Ramirez M, Prieto I, Alba F, Vives F, Banegas I, de Gasparo M. Role of central and peripheral aminopeptidase activities in the control of blood pressure: a working hypothesis.  Heart Fail Rev. 2008;  13 339-353
  • 19 Muriana FJ, Vazquez C-M, Ruiz-Gutierrez V. Fatty acid composition and properties of the liver microsomal membrane of rats fed diets enriched with cholesterol.  J Biochem. 1992;  112 562-567
  • 20 Bourre JM. Effects of nutrients (in food) on the structure and function of the nervous system: update on dietary requirements for brain. Part 2: macronutrients.  J Nutr Health Aging. 2006;  10 386-399
  • 21 McNamara RK. Evaluation of docosahexaenoic acid deficiency as a presentable risk factor for recurrent affective disorders: current status, future directions, and dietary recommendations.  Prostaglandins Leukot Essent Fatty Acids. 2009;  81 223-231
  • 22 Chung WL, Chen JJ, Su HM. Fish oil supplementation of control and (n-3) fatty acid-deficient male rats enhances reference and working memory performance and increases brain regional docosahexaenoic acid levels.  J Nutr. 2008;  138 1165-1171
  • 23 Morris MC, Evans DA, Tangney CC, Bienias JL, Wilson RS. Fish consumption and cognitive decline with age in a large community study.  Arch Neurol. 2005;  62 1849-1853
  • 24 García-Calatayud S, Redondo C, Martín E, Ruiz JI, García-Fuentes M, Sanjurjo P. Brain docosahexaenoic acid status and learning in young rats submitted to dietary long-chain polyunsaturated fatty acid deficiency and supplementation limited to lactation.  Pediatr Res. 2005;  57 719-723
  • 25 Wainwright PE. Dietary essential fatty acids and brain function: a developmental perspective on mechanisms.  Proc Nutr Soc. 2002;  61 61-69
  • 26 Molteni R, Barnard R-J, Ying Z, Roberts CK, Gomez-Pinilla F. A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning.  Neuroscience. 2002;  112 803-814
  • 27 Harris WS, Mozaffarian D, Rimm E, Kris-Etherton P, Rudel LL, Appel LJ, Engler MM, Engler MB, Sacks F. Omega-6 Fatty Acids and Risk for Cardiovascular Disease. A Science Advisory from the American Heart Association Nutrition Subcommittee of the Council on Nutrition, Physical Activity, and Metabolism; Council on Cardiovascular Nursing; and Council on Epidemiology and Prevention.  Circulation. 2009;  119 902-907
  • 28 Simopoulos AP. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases.  Exp Biol Med. 2008;  233 674-688
  • 29 Kalmijn S, Feskens EJ, Launer LJ, Kromhout D. Polyunsaturated fatty acids, antioxidants, and cognitive function in very old men.  Am J Epidemiol. 1997;  145 33-41
  • 30 Kalmijn S, van Boxtel MP, Ocké M, Verschuren WM, Kromhout D, Launer LJ. Dietary intake of fatty acids and fish in relation to cognitive performance at middle age.  Neurology.. 2004;  62 275-280
  • 31 Kolb B. Functions of the frontal cortex of the rat: a comparative review.  Brain Res. 1984;  320 65-98

Correspondence

M. Ramírez-Sánchez

Unit of Physiology

University of Jaén

23071 Jaén

Spain

Phone: +34/953/212302

Fax: +34/953/212943

Email: msanchez@ujaen.es