Subscribe to RSS
DOI: 10.1055/s-0031-1271598
© Georg Thieme Verlag KG Stuttgart ˙ New York
Mesenchymale Stromazellen und ihre klinische Anwendbarkeit
Mesenchymal Stromal Cells for Clinical ApplicationPublication History
Publication Date:
17 February 2012 (online)
Zusammenfassung
Mesenchymale Stromazellen (MSC) sind fibroblastenähnliche Zellen, welche durch ihr Verhalten in Zellkultur (Plastikadhärenz), ihr Expressionsmuster von Oberflächenantigenen sowie ihre zumindest trilineäre Differenzierungsfähigkeit (osteogen, chondrogen und adipozytär) definiert werden. Sie kommen beim Menschen in zahlreichen Geweben vor, und werden üblicherweise aus dem Knochenmark, dem Fettgewebe oder auch dem Nabelschnurblut isoliert und ex vivo expandiert. Dieser Weg über eine Ex-vivo-Expansionskultur ist notwendig, um eine ausreichende Anzahl an MSC, die als klinische Dosis zur Therapie benötigt wird, zu gewinnen. Für die möglichst kurz zu haltende Ex-vivo-Expansionsperiode sollten optimierte Kultursysteme und -protokolle sowie xenogenfreie Medien und Supplemente verwendet werden. Die immunmodulatorische Wirkung der MSC wurde bereits mehrfach erfolgreich in der Therapie der Transplantat-gegen-Wirt-Reaktion (GvHD) nach allogener Stammzelltransplantation nachgewiesen. Diese Erfahrungen veranlassten klinische Studien mit MSC bei anderen Erkrankungen mit einer Immunpathogenese, z. B. chronisch entzündliche Darmerkrankungen. Auch für die regenerative Behandlung von Gewebedefekten gibt es vielversprechende Daten aus In-vitro-Systemen und Tiermodellen. Die klinische Anwendung von MSC in diesen Indikationen (z. B. bei Myokardinfarkt, Knorpel- oder Knochendefekten) wird aktuell in einer Vielzahl von Studien geprüft. In diesem Beitrag fassen wir Aspekte zur Charakterisierung von MSC und der Ex-vivo-Expansion zusammen und geben eine Übersicht über aktuell durchgeführte klinische Prüfungen mit MSC.
Schlüsselwörter
mesenchymale Stammzellen - mesenchymale Stromazellen - MSC - Ex-vivo-Expansion - zellbasierte Immuntherapie - Geweberegeneration - regenerative Therapie - Immunmodulation - Osteogenese - klinische Studien
Literatur
- 1 Dominici M, Le Blanc K, Mueller I et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8 315-317
- 2 Rojewski M T, Weber B M, Schrezenmeier H. Phenotypic Characterization of Mesenchymal Stem Cells from Various Tissues. Transfus Med Hemother. 2008; 35 168-184
- 3 Guillot P V, Gotherstrom C, Chan J et al. Human first-trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC. Stem Cells. 2007; 25 646-654
- 4 Kaiser S, Hackanson B, Follo M et al. BM cells giving rise to MSC in culture have a heterogeneous CD34 and CD45 phenotype. Cytotherapy. 2007; 9 439-450
- 5 da Silva Meirelles L, Chagastelles P C, Nardi N B. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci. 2006; 119 2204-2213
- 6 Ye Z Q, Burkholder J K, Qiu P et al. Establishment of an adherent cell feeder layer from human umbilical cord blood for support of long-term hematopoietic progenitor cell growth. Proc Natl Acad Sci USA. 1994; 91 12140-12144
- 7 Crisan M, Yap S, Casteilla L et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008; 3 301-313
- 8 Caplan A I. Mesenchymal stem cells. J Orthop Res. 1991; 9 641-650
- 9 Ahrens N, Tormin A, Paulus M et al. Mesenchymal Stem Cell Content of Human Vertebral Bone Marrow. Transplantation. 2004; 78 925-929
- 10 Wexler S A, Donaldson C, Denning-Kendall P et al. Adult bone marrow is a rich source of human mesenchymal ‘stem’ cells but umbilical cord and mobilized adult blood are not. Br J Haematol. 2003; 121 368-374
- 11 Lee R H, Kim B, Choi I et al. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol Biochem. 2004; 14 311-324
- 12 Lee O K, Kuo T K, Chen W M et al. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood. 2004; 103 1669-1675
- 13 Schallmoser K, Rohde E, Reinisch A et al. Rapid large-scale expansion of functional mesenchymal stem cells from unmanipulated bone marrow without animal serum. Tissue Eng Part C Methods. 2008; 14 185-196
- 14 Bartmann C, Rohde E, Schallmoser K et al. Two steps to functional mesenchymal stromal cells for clinical application. Transfusion. 2007; 47 1426-1435
- 15 Ruster B, Gottig S, Ludwig R J et al. Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood. 2006; 108 3938-3944
- 16 Yagi H, Soto-Gutierrez A, Parekkadan B et al. Mesenchymal stem cells: Mechanisms of immunomodulation and homing. Cell Transplant. 2010; 19 667-679
- 17 Lee R H, Pulin A A, Seo M J et al. Intravenous hMSCs Improve Myocardial Infarction in Mice because Cells Embolized in Lung Are Activated to Secrete the Anti-inflammatory Protein TSG-6. Cell Stem Cell. 2009; 5 54-63
- 18 Chamberlain G, Fox J, Ashton B et al. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 2007; 25 2739-2749
- 19 Iso Y, Spees J L, Serrano C et al. Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment. BiochemBiophysResCommun. 2007; 354 700-706
- 20 Horwitz E M, Dominici M. How do mesenchymal stromal cells exert their therapeutic benefit?. Cytotherapy. 2008; 10 771-774
- 21 Commission Directive 2009 / 120 / EC of 14. September 2009 amending Directive 2001 / 83 / EC of the European Parliament and of the Council on the Community code relating to medicinal products for human use as regards advanced therapy medicinal products. Official Journal of the European Union. 2009; 52 3-12
- 22 Schmidtke-Schrezenmeier G, Urban M, Musyanovych A et al. Labeling of mesenchymal stromal cells with iron oxide-poly(l-lactide) nanoparticles for magnetic resonance imaging: uptake, persistence, effects on cellular function and magnetic resonance imaging properties. Cytotherapy. 2011; [Epub ahead of print] 1-14
- 23 Sensebe L, Krampera M, Schrezenmeier H et al. Mesenchymal stem cells for clinical application. Vox Sang. 2010; 98 93-107
- 24 Gieseke F, Böhringer J, Bussolari R et al. Human multipotent mesenchymal stromal cells use galectin-1 to inhibit immune effector cells. Blood. 2010; 116 3770-3779
- 25 Waterman R S, Tomchuck S L, Henkle S L et al. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PLoSOne. 2010; 5 e10088
- 26 Tokoyoda K, Zehentmeier S, Hegazy A N et al. Professional memory CD4+ T lymphocytes preferentially reside and rest in the bone marrow. Immunity. 2009; 30 721-730
- 27 Klopp A H, Gupta A, Spaeth E et al. Concise review: Dissecting a discrepancy in the literature: do mesenchymal stem cells support or suppress tumor growth?. Stem Cells;. 2011; 29 11-19
- 28 Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008; 8 726-736
- 29 Augello A, Kurth T B, De Bari C. Mesenchymal stem cells: a perspective from in vitro cultures to in vivo migration and niches. Eur Cell Mater. 2010; 20 121-133
- 30 Id B H, Lagneaux L, Najar M et al. The Src inhibitor dasatinib accelerates the differentiation of human bone marrow-derived mesenchymal stromal cells into osteoblasts. BMC Cancer. 2010; 10 298
- 31 Mikami Y, Lee M, Irie S et al. Dexamethasone modulates osteogenesis and adipogenesis with regulation of osterix expression in rat calvaria-derived cells. J Cell Physiol. 2011; 226 739-748
- 32 Mohyeldin A, Garzon-Muvdi T, Quinones-Hinojosa A. Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell. 2010; 7 150-161
- 33 Schafer R, Northoff H. Characteristics of Mesenchymal Stem Cells – New Stars in Regenerative Medicine or Unrecognized Old Fellows in Autologous Regeneration?. Transfus Med Hemother. 2008; 35 154-159
- 34 Sato K, Ozaki K, Mori M et al. Mesenchymal Stromal Cells for Graft-Versus-Host Disease: Basic Aspects and Clinical Outcomes. Journal of Clinical and Experimental Hematopathology. 2010; 50 79-89
- 35 Sensebe L, Bourin P. Mesenchymal stem cells for therapeutic purposes. Transplantation. 2009; 87 S49-S53
- 36 Jethva R, Otsuru S, Dominici M et al. Cell therapy for disorders of bone. Cytotherapy. 2009; 11 3-17
- 37 Choi Y H, Kurtz A, Stamm C. Mesenchymal stem cells for cardiac cell therapy. Hum Gene Ther. 2011; 22 3-17
- 38 Aquino J B, Bolontrade M F, Garcia M G et al. Mesenchymal stem cells as therapeutic tools and gene carriers in liver fibrosis and hepatocellular carcinoma. Gene Ther. 2010; 17 692-708
- 39 Vija L, Farge D, Gautier J F et al. Mesenchymal stem cells: Stem cell therapy perspectives for type 1 diabetes. Diabetes Metab. 2009; 35 85-93
- 40 Duijvestein M, Vos A CW, Roelofs H et al. Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn‘s disease: results of a phase I study. Gut. 2010; 59 1662-1669
- 41 Joyce N, Annett G, Wirthlin L et al. Mesenchymal stem cells for the treatment of neurodegenerative disease. Regen Med. 2010; 5 933-946
- 42 Le Blanc K, Rasmusson I, Sundberg B et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet. 2004; 363 1439-1441
- 43 Le Blanc K, Frassoni F, Ball L et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet. 2008; 371 1579-1586
- 44 Fang B, Song Y, Liao L et al. Favorable response to human adipose tissue-derived mesenchymal stem cells in steroid-refractory acute graft-versus-host disease. Transplant Proc. 2007; 39 3358-3362
- 45 Muller I, Kordowich S, Holzwarth C et al. Application of multipotent mesenchymal stromal cells in pediatric patients following allogeneic stem cell transplantation. Blood Cells Mol Dis. 2008; 40 25-32
- 46 Zhou H, Guo M, Bian C et al. Efficacy of bone marrow-derived mesenchymal stem cells in the treatment of sclerodermatous chronic graft-versus-host disease: clinical report. Biol Blood Marrow Transplant. 2010; 16 403-412
- 47 Ringden O, Uzunel M, Rasmusson I et al. Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation. 2006; 81 1390-1397
- 48 von Bonin M, Stolzel F, Goedecke A et al. Treatment of refractory acute GVHD with third-party MSC expanded in platelet lysate-containing medium. Bone Marrow Transplant. 2008; 43 245-251
- 49 Arima N, Nakamura F, Fukunaga A et al. Single intra-arterial injection of mesenchymal stromal cells for treatment of steroid-refractory acute graft-versus-host disease: a pilot study. Cytotherapy. 2010; 12 265-268
- 50 Allison M. Genzyme backs Osiris, despite Prochymal flop. Nat Biotech. 2009; 27 966-967
-
51 Osiris Therapeutics, Inc .Osiris Therapeutics Announces Preliminary Results for Prochymal Phase III GvHD Trials. 8.9.2009 Im Internet: http://http://www.osiristx.com/pdf/PR%20123%2008Sep09%20Phase%20III%20GvHD%20Topline%20Results.pdf Stand: 18.7.2011
- 52 Rosland G V, Svendsen A, Torsvik A et al. Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res. 2009; 69 5331-5339
- 53 Rubio D, Garcia S, De la Cueva T et al. Human mesenchymal stem cell transformation is associated with a mesenchymal-epithelial transition. Exp Cell Res. 2008; 314 691-698
- 54 Rubio D, Garcia-Castro J, Martin M C et al. Spontaneous human adult stem cell transformation. Cancer Res. 2005; 65 3035-3039
- 55 Garcia S, Bernad A, Martin M C et al. Pitfalls in spontaneous in vitro transformation of human mesenchymal stem cells. Exp Cell Res. 2010; 316 1648-1650
- 56 de la Fuente R, Bernad A, Garcia-Castro J et al. Retraction: Spontaneous human adult stem cell transformation. Cancer Res. 2010; 70 6682
- 57 Torsvik A, Rosland G V, Svendsen A et al. Spontaneous malignant transformation of human mesenchymal stem cells reflects cross-contamination: putting the research field on track – letter. Cancer Res. 2010; 70 6393-6396
- 58 Tarte K, Gaillard J, Lataillade J J et al. Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation. Blood. 2010; 115 1549-1553
- 59 Klopp A H, Gupta A, Spaeth 3rd E et al. Dissecting a Discrepancy in the Literature: Do Mesenchymal Stem Cells Support or Suppress Tumor Growth?. Stem Cells. 2011; 29 11-19
-
60 HEALTH-2009-1-4-2 .Regenerating Bone Defects Using New biomedical Engineering Approaches (REBORNE). Im Internet: http://http://www.reborne.org Stand: 18.7.2011
-
61 HEALTH-F5-2009-223236 .Cultivated Adult Stem Cells as Alternative for Damaged Tissue (CASCADE) funded by the European Commissions 7th Framework Program. Im Internet: http://http://www.cascade-7fp.eu Stand: 18.7.2011
- 62 Ning H, Yang F, Jiang M et al. The correlation between cotransplantation of mesenchymal stem cells and higher recurrence rate in hematologic malignancy patients: outcome of a pilot clinical study. Leukemia. 2008; 22 593-599
- 63 von Bonin M, Kiani A, Platzbecker U et al. Third-party mesenchymal stem cells as part of the management of graft-failure after haploidentical stem cell transplantation. Leuk Res. 2009; 33 e215-e217
- 64 Kebriaei P, Isola L, Bahceci E et al. Adult human mesenchymal stem cells added to corticosteroid therapy for the treatment of acute graft-versus-host disease. Biol Blood Marrow Transplant. 2009; 15 804-811
- 65 Zhou H, Guo M, Bian C et al. Efficacy of Bone Marrow-Derived Mesenchymal Stem Cells in the Treatment of Sclerodermatous Chronic Graft-versus-Host Disease: Clinical Report. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2010; 16 403-412
Prof. Dr. med. H. Schrezenmeier
Institut für Klinische Transfusionsmedizin und Immungenetik Ulm
Helmholtzstraße 10
89081 Ulm
Email: h.schrezenmeier@blutspende.de