
Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin that has glucoregulatory effects as well as protective effects in a variety of tissues, including the heart. We hypothesized that GLP-1 may have a direct effect on neutrophils (PMNs) after myocardial ischemia, to ameliorate reperfusion injury. Deeply anesthetized Sprague-Dawley rats underwent 30 min of left coronary artery occlusion followed by 120 min of reperfusion. Immediately prior to reperfusion, rats were treated with either GLP-1 (human rGLP-1, 30 pM/kg/min) or PBS as placebo. GLP-1 significantly decreased myocardial infarct size [73.2±11.7% INF/AAR in PBS (n=4) vs. 15.7 ±5.52% INF/AAR in GLP-1-treated animals (n=5), p<0.05], PMN activation in blood in vivo (fMLP-stimulated CD11b surface expression: PBS 2.78±1.14 vs. GLP-1 1.7±0.21, TFI, p<0.05), and accumulation in myocardium (PBS: 6.52±0.31 vs. GLP-1: 4.78±0.90, n=4–6 animals/group, p<0.05). In addition, we found that GLP-1 mitigated PMN CD11b surface expression in whole rat blood in vitro, an effect that was abolished by GLP-1 receptor blockade (PBS 6.52±0.31 vs. GLP-1 4.78±0.90, TFI, p<0.05). These findings suggest that one mechanism by which GLP-1 decreases reperfusion injury may be the attenuation of PMN-mediated reperfusion injury.
Key words
myocardial infarction - ischemia-reperfusion injury - PMN - GLP-1 - CD11b
References
-
1
Rosamond W, Flegal K, Furie K, Go A, Greenlund K, Haase N, Hailpern SM, Ho M, Howard V, Kissela B, Kittner S, Lloyd-Jones D, McDermott M, Meigs J, Moy C, Nichol G, O’Donnell C, Roger V, Sorlie P, Steinberger J, Thom T, Wilson M, Hong Y, Amer Heart Assoc Stat Comm S.
Heart disease and stroke statistics – 2008 update – A report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee.
Circulation.
2008;
117
E25-E146
-
2
Libby P.
The molecular mechanisms of the thrombotic complications of atherosclerosis.
J Intern Med.
2008;
263
517-527
-
3
Burke AP, Virmani R.
Pathophysiology of acute myocardial infarction.
Med Clin North Am.
2007;
91
553-572
-
4
Heusch G.
Postconditioning: Old wine in a new bottle?.
J Am Coll Cardiol.
2004;
44
1111-1112
-
5
Yellon DM, Hausenloy DJ.
Myocardial reperfusion injury.
N Engl J Med.
2007;
357
1121-1135
-
6
Jordan JE, Zhao ZQ, Vinten-Johansen J.
The role of neutrophils in myocardial ischemia-reperfusion injury.
Cardiovasc Res.
1999;
43
860-878
-
7
Ovize M, Baxter GF, Di Lisa F, Ferdinandy Pt, Garcia-Dorado D, Hausenloy DJ, Heusch G, Vinten-Johansen J, Yellon DM, Schulz R.
Postconditioning and protection from reperfusion injury: where do we stand? Position Paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology.
Cardiovasc Res.
2010;
87
406-423
-
8
Briones M, Bajaj M.
Exenatide: a GLP-1 receptor agonist as novel therapy for Type 2 diabetes mellitus.
Expert Opin Pharmacother.
2006;
7
1055-1064
-
9
Bose AK, Mocanu MM, Carr RD, Yellon DM.
Myocardial ischaemia-reperfusion injury is attenuated by intact glucagon like peptide-1 (GLP-1) in the in vitro rat heart and may involve the p70s6 K pathway.
Cardiovasc Drugs Ther.
2007;
21
253-256
-
10
Bose AK, Mocanu MM, Carr RD, Brand CL, Yellon DM.
Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury.
Diabetes.
2005;
54
146-151
-
11
Sonne DP, Engstrom T, Treiman M.
Protective effects of GLP-1 analogues exendin-4 and GLP-1 (9–36) amide against ischemia-reperfusion injury in rat heart.
Regul Pept.
2008;
146
243-249
-
12
Timmers L, Henriques JPS, de Kleijn DPV, DeVries JH, Kemperman H, Steendijk P, Verlaan CWJ, Kerver M, Piek JJ, Doevendans PA, Pasterkamp G, Hoefer IE.
Exenatide Reduces Infarct Size and Improves Cardiac Function in a Porcine Model of Ischemia and Reperfusion Injury.
J Am College Cardiol.
2009;
53
501-510
-
13
Ban K, Noyan-Ashraf MH, Hoefer J, Bolz SS, Drucker DJ, Husain M.
Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways.
Circulation.
2008;
117
2340-2350
-
14
Noyan-Ashraf MH, Momen MA, Ban K, Sadi A-M, Zhou Y-Q, Riazi AM, Baggio LL, Henkelman RM, Husain M, Drucker DJ.
GLP-1R Agonist Liraglutide Activates Cytoprotective Pathways and Improves Outcomes After Experimental Myocardial Infarction in Mice.
Diabetes.
2009;
58
975-983
-
15
Hausenloy D, Baxter G, Bell R, Bøtker H, Davidson S, Downey J, Heusch G, Kitakaze M, Lecour S, Mentzer R, Mocanu M, Ovize M, Schulz R, Shannon R, Walker M, Walkinshaw G, Yellon D.
Translating novel strategies for cardioprotection: the Hatter Workshop Recommendations.
Basic Res Cardiol.
2010;
105
677-686
-
16
La Bonte LR, Davis-Gorman G, Stahl GL, McDonagh PF.
Complement inhibition reduces injury in the type 2 diabetic heart following ischemia and reperfusion.
Am J Physiol Heart Circ Physiol.
2008;
294
H1282-H1290
-
17
La Bonte LR, Dokken B, Davis-Gorman G, Stahl GL, McDonagh PF.
The mannose-binding lectin pathway is a significant contributor to reperfusion injury in the type 2 diabetic heart.
Diabetes Vasc Dis Res.
2009;
6
172-180
-
18
Hokama JY, Ritter LS, Davis-Gorman G, Cimetta AD, Copeland JG, McDonagh PF.
Diabetes enhances leukocyte accumulation in the coronary microcirculation early in reperfusion following ischemia.
J Diabetes Complicat.
2000;
14
96-107
-
19
Legare JF, Oxner A, Heimrath O, Issekutz T.
Infiltration of polymorphonuclear cells into the post-ischaemic myocardium is dependent on beta 2 and alpha 4 integrins.
Int J Exp Pathol.
2007;
88
291-300
-
20
McDonagh PF, Rauzzino MJ.
Stimulated leukocyte adhesion in coronary microcirculation is reduced by a calcium antagonist.
Am J Physiol Heart Circ Physiol.
1993;
265
H476-H483
-
21
Hoffmeyer MR, Scalia R, Ross CR, Jones SP, Lefer DJ.
PR-39, a potent neutrophil inhibitor, attenuates myocardial ischemia-reperfusion injury in mice.
Am J Physiol Heart Circ Physiol.
2000;
279
H2824-H2828
-
22
Feng Y, Zhao H, Xu X, Buys ES, Raher MJ, Bopassa JC, Thibault H, Scherrer-Crosbie M, Schmidt U, Chao W.
Innate immune adaptor MyD88 mediates neutrophil recruitment and myocardial injury after ischemia-reperfusion in mice.
Am J Physiol Heart Circ Physiol.
2008;
295
H1311-H1318
-
23
Zerria K, Jerbi E, Hammami S, Maaroufi A, Boubaker S, Xiong JP, Arnaout MA, Fathallah DM.
Recombinant integrin CD11b A-domain blocks polymorphonuclear cells recruitment and protects against skeletal muscle inflammatory injury in the rat.
Immunology.
2006;
119
431-440
-
24
McDonagh PF, Wilson DS, Iwamura H, Smith CW, Williams SK, Copeland JG.
CD18 Antibody Treatment Limits Early Myocardial Reperfusion Injury after Initial Leukocyte Deposition.
J Surg Res.
1996;
64
139-149
-
25
Faxon DP, Gibbons RJ, Chronos NAF, Gurbel PA, Martin JS.
The effect of a CD11/CD18 inhibitor (Hu23F2G) on infarct size following direct angioplasty: The HALT MI study.
Circulation.
1999;
18
(Suppl S)
791-792
(Abstract)
-
26
Baran KW, Nguyen M, McKendall GR, Lambrew CT, Dykstra G, Palmeri ST, Gibbons RJ, Borzak S, Sobel BE, Gourlay SG, Rundle AC, Gibson CM, Barron HV.
Double-blind, randomized trial of an Anti-CD18 antibody in conjunction with recombinant tissue plasminogen activator for acute myocardial infarction – Limitation of myocardial infarction following thrombolysis in acute myocardial infarction (LIMIT AMI) study.
Circulation.
2001;
104
2778-2783
-
27
Faxon DP, Gibbons RJ, Chronos NAF, Gurbel PA, Sheehan F, Investigators H-M.
The effect of blockade of the CD11/CD18 integrin receptor on infarct size in patients with acute myocardial infarction treated with direct angioplasty: The results of the HALT-MI study.
Journal of the American College of Cardiology.
2002;
40
1199-1204
-
28
John B, Hunter CA.
Immunology. Neutrophil soldiers or Trojan Horses?.
Science.
2008;
321
917-918
-
29
Duilio C, Ambrosio G, Kuppusamy P, DiPaula A, Becker LC, Zweier JL.
Neutrophils are primary source of O2 radicals during reperfusion after prolonged myocardial ischemia.
Am J Physiol Heart Circ Physiol.
2001;
280
H2649-H2657
-
30
Vinten-Johansen J.
Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury.
Cardiovasc Res.
2004;
61
481-497
-
31
Williams FM.
Neutrophils and myocardial reperfusion injury.
Pharmacol Therap.
1996;
72
1-12
-
32
Ye Y, Keyes KT, Zhang C, Perez-Polo JR, Lin Y, Birnbaum Y.
The myocardial infarct size-limiting effect of sitagliptin is PKA-dependent, whereas the protective effect of pioglitazone is partially dependent on PKA.
Am J Physiol Heart Circ Physiol.
2010;
298
H1454-H1465
-
33
Sauve M, Ban K, Momen MA, Zhou Y-Q, Henkelman RM, Husain M, Drucker DJ.
Genetic Deletion or Pharmacological Inhibition of Dipeptidyl Peptidase-4 Improves Cardiovascular Outcomes After Myocardial Infarction in Mice.
Diabetes.
2010;
59
1063-1073
-
34
Bose AK, Mocanu MM, Carr RD, Brand CL, Yellon DM.
Myocardial infarct size attenuation by glucagon like peptide-1 (GLP-1) in both in vivo and in vitro rat heart.
Diabetologia.
2004;
47
A46
-
35
Bose AK, Mocanu MM, Carr RD, Yellon DM.
Glucagon like peptide-1 is protective against myocardial ischemia/reperfusion injury when given either as a preconditioning mimetic or at reperfusion in an isolated rat heart model.
Cardiovasc Drugs Ther.
2005;
19
9-11
-
36
Brubaker PL, Drucker DJ.
Minireview: Glucagon-Like Peptides Regulate Cell Proliferation and Apoptosis in the Pancreas, Gut, and Central Nervous System.
Endocrinology.
2004;
145
2653-2659
-
37
Buteau J.
GLP-1 receptor signaling: effects on pancreatic beta-cell proliferation and survival.
Diabetes Metab.
2008;
34
S73-S77
-
38
Greig NH, Mattson MP, Perry T, Chan SL, Giordano T, Sambamurti K, Rogers JT, Ovadia H, Lahiri DK.
New therapeutic strategies and drug candidates for neurodegenerative diseases p53 and TNF-alpha inhibitors, and GLP-1 receptor agonists.
Ann New York Acad Sci.
2004;
1035
290-315
-
39
Kimura R, Okouchi M, Fujioka H, Ichiyanagi A, Ryuge F, Mizuno T, Imaeda K, Okayama N, Kamiya Y, Asai K, Joh T.
Glucagon-like peptide-1 (GLP-1) protects against methylglyoxal-induced PC12 cell apoptosis through the PI3K/Akt/mTOR/GCLc/redox signaling pathway.
Neuroscience.
2009;
162
1212-1219
-
40
Huisamen B, Genade S, Lochner A.
Signalling pathways activated by glucagon-like peptide-1 (7–36) amide in the rat heart and their role in protection against ischaemia.
Cardiovasc J Africa.
2008;
19
77-83
-
41
Xie Y, Wang SX, Sha WW, Zhou X, Wang WL, Han LP, Li DQ, Yu DM.
Effects and mechanism of glucagon-like peptide-1 on injury of rats cardiomyocytes induced by hypoxia-reoxygenation.
Chin Med J.
2008;
121
2134-2138
-
42
Sulistio M, Carothers C, Mangat M, Lujan M, Oliveros R, Chilton R.
GLP-1 agonist-based therapies: An emerging new class of antidiabetic drug with potential cardioprotective effects.
Curr Atheroscler Rep.
2009;
11
93-99
-
43
Timmers L, Henriques J, de Kleijn D, Devries J, Kemperman H, Steendijk P, Verlaan C, Kerver M, Piek J, Doevendans P, Pasterkamp G, Hoefer I.
Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury.
J Am Coll Cardiol.
2009;
53
501-510
-
44
Kavianipour M, Ehlers MR, Malmberg K, Ronquist G, Ryden L, Wikstrom G, Gutniak M.
Glucagon-like peptide-1 (7–36) amide prevents the accumulation of pyruvate and lactate in the ischemic and non-ischemic porcine myocardium.
Peptides.
2003;
24
569-578
-
45
Zhao T, Parikh P, Bhashyam S, Bolukoglu H, Poornima I, Shen Y-T, Shannon RP.
Direct Effects of Glucagon-Like Peptide-1 on Myocardial Contractility and Glucose Uptake in Normal and Postischemic Isolated Rat Hearts.
J Pharmacol Exp Ther.
2006;
317
1106-1113
-
46
Dokken BB, Hilwig WR, Teachey MK, Panchal RA, Huebner K, Allen D, Rogers DC, Kern KB.
Glucagon-like peptide-1 (GLP-1) attenuates post-resuscitation myocardial microcirculatory dysfunction.
Resuscitation.
2010;
81
755-760
-
47
Arakawa M, Mita T, Azuma K, Ebato C, Goto H, Nomiyama T, Fujitani Y, Hirose T, Kawamori R, Watada H.
Inhibition of Monocyte Adhesion to Endothelial Cells and Attenuation of Atherosclerotic Lesion by a Glucagon-like Peptide-1 Receptor Agonist, Exendin-4.
Diabetes.
2010;
59
1030-1037
-
48
Liu H, Dear A, Knudsen L, Simpson R.
A long-acting GLP-1 analogue attenuates induction of PAI-1 and vascular adhesion molecules.
J Endocrinol.
2009;
201
59-66
-
49
Liu HB, Hu YS, Simpson RW, Dear AE.
Glucagon-like peptide-1 attenuates tumour necrosis factor-alpha-mediated induction of plasmogen activator inhibitor-1 expression.
J Endocrinol.
2008;
196
57-65
-
50
Hattori Y, Jojima T, Tomizawa A, Satoh H, Hattori S, Kasai K, Hayashi T.
A glucagon-like peptide-1 (GLP-1) analogue, liraglutide, upregulates nitric oxide production and exerts anti-inflammatory action in endothelial cells.
Diabetologia.
2010;
53
2256-2263
-
51
Skyschally A, van Caster P, Iliodromitis E, Schulz R, Kremastinos D, Heusch G.
Ischemic postconditioning: experimental models and protocol algorithms.
Basic Res Cardiol.
2009;
104
469-483
-
52
Fang J, Wu LM, Chen L.
Postconditioning attenuates cardiocyte ultrastructure injury and apoptosis by blocking mitochondrial permeability transition in rats.
Acta Cardiologica.
2008;
63
377-387
-
53
Jang YG, Xi JK, Wang HH, Mueller RA, Norfleet EA, Xu ZL.
Postconditioning prevents Reperfusion injury by activating delta-opioid receptors.
Anesthesiology.
2008;
108
243-250
-
54
Sato H, Zhao ZO, Jordan JE, Williams MW, Sarvotham SS, Vintenjohansen J.
Gradual restoration of reperfusion reduces coronary artery endothelial injury and myocardial infarction.
Faseb J.
1995;
9
A421
-
55
Kin H, Zhao Z-Q, Sun H-Y, Wang N-P, Corvera JS, Halkos ME, Kerendi F, Guyton RA, Vinten-Johansen J.
Postconditioning attenuates myocardial ischemia-reperfusion injury by inhibiting events in the early minutes of reperfusion.
Cardiovasc Res.
2004;
62
74-85
-
56
Ban K, Kim K-H, Cho C-K, Sauve M, Diamandis EP, Backx PH, Drucker DJ, Husain M.
Glucagon-Like Peptide (GLP)-1 (9–36) Amide-Mediated Cytoprotection Is Blocked by Exendin (9–39) Yet Does Not Require the Known GLP-1 Receptor.
Endocrinology.
2010;
151
1520-1531
Correspondence
B. B. Dokken
Department of Medicine
University of Arizona
1656 E. Mabel Street
PO Box 245218
AZ 85724-5218
Tucson
USA
Telefon: +1/520/626 8515
Fax: +1/520/626 3644
eMail: bdokken@deptofmed.arizona.edu