ABSTRACT
In most cholangiopathies, liver diseases of different etiologies in which the biliary epithelium is the primary target in the pathogenic sequence, the central mechanism involves inflammation. Inflammation, characterized by pleomorphic peribiliary infiltrate containing fibroblasts, macrophages, lymphocytes, as well as endothelial cells and pericytes, is associated to the emergence of “reactive cholangiocytes.” These biliary cells do not possess bile secretory functions, are in contiguity with terminal cholangioles, and are of a less-differentiated phenotype. They have acquired several mesenchymal properties, including motility and ability to secrete a vast number of proinflammatory chemo/cytokines and growth factors along with de novo expression of a rich receptor machinery. These functional properties enable reactive cholangiocytes to establish intimate contacts and to mutually exchange a variety of paracrine signals with the different mesenchymal cell types populating the portal infiltrate. The extensive crosstalk between the epithelial and mesenchymal compartments is the driver of liver repair mechanisms in cholangiopathies, ultimately evolving toward portal fibrosis. Herein, the authors first review the properties of the different cell types involved in their interaction, and then analyze the underlying molecular mechanisms as they relate to liver repair in cholangiopathies.
KEYWORDS
Cholangiopathies - cholangiocytes - ductular reaction - myofibroblasts - endothelial cells
REFERENCES
-
1
Lazaridis K N, Strazzabosco M, Larusso N F.
The cholangiopathies: disorders of biliary epithelia.
Gastroenterology.
2004;
127
(5)
1565-1577
-
2
Strazzabosco M, Fabris L, Spirli C.
Pathophysiology of cholangiopathies.
J Clin Gastroenterol.
2005;
39
(4, Suppl 2)
S90-S102
-
3
Spirlì C, Fabris L, Duner E et al..
Cytokine-stimulated nitric oxide production inhibits adenylyl cyclase and cAMP-dependent secretion in cholangiocytes.
Gastroenterology.
2003;
124
(3)
737-753
-
4
Liu Z, Sakamoto T, Ezure T et al..
Interleukin-6, hepatocyte growth factor, and their receptors in biliary epithelial cells during a type I ductular reaction in mice: interactions between the periductal inflammatory and stromal cells and the biliary epithelium.
Hepatology.
1998;
28
(5)
1260-1268
-
5
Terada R, Yamamoto K, Hakoda T et al..
Stromal cell-derived factor-1 from biliary epithelial cells recruits CXCR4-positive cells: implications for inflammatory liver diseases.
Lab Invest.
2003;
83
(5)
665-672
-
6
Yokoyama T, Komori A, Nakamura M et al..
Human intrahepatic biliary epithelial cells function in innate immunity by producing IL-6 and IL-8 via the TLR4-NF-kappaB and -MAPK signaling pathways.
Liver Int.
2006;
26
(4)
467-476
-
7
Reynoso-Paz S, Coppel R L, Mackay I R, Bass N M, Ansari A A, Gershwin M E.
The immunobiology of bile and biliary epithelium.
Hepatology.
1999;
30
(2)
351-357
-
8
Desmet V J.
Histopathology of chronic cholestasis and adult ductopenic syndrome.
Clin Liver Dis.
1998;
2
(2)
249-264, viii
-
9
Gaudio E, Barbaro B, Alvaro D et al..
Vascular endothelial growth factor stimulates rat cholangiocyte proliferation via an autocrine mechanism.
Gastroenterology.
2006;
130
(4)
1270-1282
-
10
Fabris L, Cadamuro M, Fiorotto R et al..
Effects of angiogenic factor overexpression by human and rodent cholangiocytes in polycystic liver diseases.
Hepatology.
2006;
43
(5)
1001-1012
-
11
Caligiuri A, Glaser S, Rodgers R E et al..
Endothelin-1 inhibits secretin-stimulated ductal secretion by interacting with ETA receptors on large cholangiocytes.
Am J Physiol.
1998;
275
(4 Pt 1)
G835-G846
-
12
Grappone C, Pinzani M, Parola M et al..
Expression of platelet-derived growth factor in newly formed cholangiocytes during experimental biliary fibrosis in rats.
J Hepatol.
1999;
31
(1)
100-109
-
13
George J, Roulot D, Koteliansky V E, Bissell D M.
In vivo inhibition of rat stellate cell activation by soluble transforming growth factor beta type II receptor: a potential new therapy for hepatic fibrosis.
Proc Natl Acad Sci U S A.
1999;
96
(22)
12719-12724
-
14
Sedlaczek N, Jia J D, Bauer M et al..
Proliferating bile duct epithelial cells are a major source of connective tissue growth factor in rat biliary fibrosis.
Am J Pathol.
2001;
158
(4)
1239-1244
-
15
Yasoshima M, Kono N, Sugawara H, Katayanagi K, Harada K, Nakanuma Y.
Increased expression of interleukin-6 and tumor necrosis factor-alpha in pathologic biliary epithelial cells: in situ and culture study.
Lab Invest.
1998;
78
(1)
89-100
-
16
Nichols M T, Gidey E, Matzakos T et al..
Secretion of cytokines and growth factors into autosomal dominant polycystic kidney disease liver cyst fluid.
Hepatology.
2004;
40
(4)
836-846
-
17
Barnes B H, Tucker R M, Wehrmann F, Mack D G, Ueno Y, Mack C L.
Cholangiocytes as immune modulators in rotavirus-induced murine biliary atresia.
Liver Int.
2009;
29
(8)
1253-1261
-
18
Marra F, DeFranco R, Grappone C et al..
Increased expression of monocyte chemotactic protein-1 during active hepatic fibrogenesis: correlation with monocyte infiltration.
Am J Pathol.
1998;
152
(2)
423-430
-
19
Saito J M, Maher J J.
Bile duct ligation in rats induces biliary expression of cytokine-induced neutrophil chemoattractant.
Gastroenterology.
2000;
118
(6)
1157-1168
-
20
Fabris L, Strazzabosco M, Crosby H A et al..
Characterization and isolation of ductular cells coexpressing neural cell adhesion molecule and Bcl-2 from primary cholangiopathies and ductal plate malformations.
Am J Pathol.
2000;
156
(5)
1599-1612
-
21
Popov Y, Patsenker E, Stickel F et al..
Integrin alphavbeta6 is a marker of the progression of biliary and portal liver fibrosis and a novel target for antifibrotic therapies.
J Hepatol.
2008;
48
(3)
453-464
-
22
Patsenker E, Popov Y, Stickel F, Jonczyk A, Goodman S L, Schuppan D.
Inhibition of integrin alphavbeta6 on cholangiocytes blocks transforming growth factor-beta activation and retards biliary fibrosis progression.
Gastroenterology.
2008;
135
(2)
660-670
-
23
Desmet V J.
The amazing universe of hepatic microstructure.
Hepatology.
2009;
50
(2)
333-344
-
24
Omenetti A, Yang L, Li Y X et al..
Hedgehog-mediated mesenchymal-epithelial interactions modulate hepatic response to bile duct ligation.
Lab Invest.
2007;
87
(5)
499-514
-
25
Ader T, Norel R, Levoci L, Rogler L E.
Transcriptional profiling implicates TGFbeta/BMP and Notch signaling pathways in ductular differentiation of fetal murine hepatoblasts.
Mech Dev.
2006;
123
(2)
177-194
-
26
Thompson M D, Monga S P.
WNT/beta-catenin signaling in liver health and disease.
Hepatology.
2007;
45
(5)
1298-1305
-
27
Michalopoulos G K, Bowen W C, Mulè K, Lopez-Talavera J C, Mars W.
Hepatocytes undergo phenotypic transformation to biliary epithelium in organoid cultures.
Hepatology.
2002;
36
(2)
278-283
-
28
Apte U, Thompson M D, Cui S, Liu B, Cieply B, Monga S P.
Wnt/beta-catenin signaling mediates oval cell response in rodents.
Hepatology.
2008;
47
(1)
288-295
-
29
Santoni-Rugiu E, Jelnes P, Thorgeirsson S S, Bisgaard H C.
Progenitor cells in liver regeneration: molecular responses controlling their activation and expansion.
APMIS.
2005;
113
(11-12)
876-902
-
30
Li Z, White P, Tuteja G, Rubins N, Sackett S, Kaestner K H.
Foxa1 and Foxa2 regulate bile duct development in mice.
J Clin Invest.
2009;
119
(6)
1537-1545
-
31
Strazzabosco M.
Foxa1 and Foxa2 regulate bile duct development in mice.
J Hepatol.
2010;
52
(5)
765-767
-
32
Semela D, Das A, Langer D, Kang N, Leof E, Shah V.
Platelet-derived growth factor signaling through ephrin-b2 regulates hepatic vascular structure and function.
Gastroenterology.
2008;
135
(2)
671-679
-
33
Fernández M, Semela D, Bruix J, Colle I, Pinzani M, Bosch J.
Angiogenesis in liver disease.
J Hepatol.
2009;
50
(3)
604-620
-
34
Medina J, Sanz-Cameno P, García-Buey L, Martín-Vílchez S, López-Cabrera M, Moreno-Otero R.
Evidence of angiogenesis in primary biliary cirrhosis: an immunohistochemical descriptive study.
J Hepatol.
2005;
42
(1)
124-131
-
35
Kawahara N, Ono M, Taguchi K et al..
Enhanced expression of thrombospondin-1 and hypovascularity in human cholangiocarcinoma.
Hepatology.
1998;
28
(6)
1512-1517
-
36
Abrahám S, Szabó A, Kaszaki J et al..
Kupffer cell blockade improves the endotoxin-induced microcirculatory inflammatory response in obstructive jaundice.
Shock.
2008;
30
(1)
69-74
-
37
Shipley J M, Wesselschmidt R L, Kobayashi D K, Ley T J, Shapiro S D.
Metalloelastase is required for macrophage-mediated proteolysis and matrix invasion in mice.
Proc Natl Acad Sci U S A.
1996;
93
(9)
3942-3946
-
38
Fallowfield J A, Mizuno M, Kendall T J et al..
Scar-associated macrophages are a major source of hepatic matrix metalloproteinase-13 and facilitate the resolution of murine hepatic fibrosis.
J Immunol.
2007;
178
(8)
5288-5295
-
39
Popov Y, Sverdlov D Y, Bhaskar K R et al..
Macrophage-mediated phagocytosis of apoptotic cholangiocytes contributes to reversal of experimental biliary fibrosis.
Am J Physiol Gastrointest Liver Physiol.
2010;
298
(3)
G323-G334
-
40
Wuestefeld T, Klein C, Streetz K L et al..
Interleukin-6/glycoprotein 130-dependent pathways are protective during liver regeneration.
J Biol Chem.
2003;
278
(13)
11281-11288
-
41
Jakubowski A, Ambrose C, Parr M et al..
TWEAK induces liver progenitor cell proliferation.
J Clin Invest.
2005;
115
(9)
2330-2340
-
42
Shimoda S, Harada K, Niiro H et al..
Biliary epithelial cells and primary biliary cirrhosis: the role of liver-infiltrating mononuclear cells.
Hepatology.
2008;
47
(3)
958-965
-
43
Shimoda S, Harada K, Niiro H et al..
CX3CL1 (fractalkine): a signpost for biliary inflammation in primary biliary cirrhosis.
Hepatology.
2010;
51
(2)
567-575
-
44
Klein I, Cornejo J C, Polakos N K et al..
Kupffer cell heterogeneity: functional properties of bone marrow derived and sessile hepatic macrophages.
Blood.
2007;
110
(12)
4077-4085
-
45
Imamura M, Ogawa T, Sasaguri Y, Chayama K, Ueno H.
Suppression of macrophage infiltration inhibits activation of hepatic stellate cells and liver fibrogenesis in rats.
Gastroenterology.
2005;
128
(1)
138-146
-
46
Tacke F, Alvarez D, Kaplan T J et al..
Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques.
J Clin Invest.
2007;
117
(1)
185-194
-
47
Karlmark K R, Weiskirchen R, Zimmermann H W et al..
Hepatic recruitment of the inflammatory Gr1 + monocyte subset upon liver injury promotes hepatic fibrosis.
Hepatology.
2009;
50
(1)
261-274
-
48
Zimmermann H W, Seidler S, Nattermann J et al..
Functional contribution of elevated circulating and hepatic non-classical CD14CD16 monocytes to inflammation and human liver fibrosis.
PLoS ONE.
2010;
5
(6)
e11049
-
49
Kinnman N, Hultcrantz R, Barbu V et al..
PDGF-mediated chemoattraction of hepatic stellate cells by bile duct segments in cholestatic liver injury.
Lab Invest.
2000;
80
(5)
697-707
-
50
Schaffner F, Barka T, Popper H.
Hepatic mesenchymal cell reaction in liver disease.
Exp Mol Pathol.
1963;
31
419-441
-
51
Dranoff J A, Wells R G.
Portal fibroblasts: Underappreciated mediators of biliary fibrosis.
Hepatology.
2010;
51
(4)
1438-1444
-
52
Milani S, Herbst H, Schuppan D, Stein H, Surrenti C.
Transforming growth factors beta 1 and beta 2 are differentially expressed in fibrotic liver disease.
Am J Pathol.
1991;
139
(6)
1221-1229
-
53
Kruglov E A, Nathanson R A, Nguyen T, Dranoff J A.
Secretion of MCP-1/CCL2 by bile duct epithelia induces myofibroblastic transdifferentiation of portal fibroblasts.
Am J Physiol Gastrointest Liver Physiol.
2006;
290
(4)
G765-G771
-
54
Jhandier M N, Kruglov E A, Lavoie E G, Sévigny J, Dranoff J A.
Portal fibroblasts regulate the proliferation of bile duct epithelia via expression of NTPDase2.
J Biol Chem.
2005;
280
(24)
22986-22992
-
55
Kinnman N, Francoz C, Barbu V et al..
The myofibroblastic conversion of peribiliary fibrogenic cells distinct from hepatic stellate cells is stimulated by platelet-derived growth factor during liver fibrogenesis.
Lab Invest.
2003;
83
(2)
163-173
-
56
Russo F P, Alison M R, Bigger B W et al..
The bone marrow functionally contributes to liver fibrosis.
Gastroenterology.
2006;
130
(6)
1807-1821
-
57
Wells R G.
The epithelial-to-mesenchymal transition in liver fibrosis: here today, gone tomorrow?.
Hepatology.
2010;
51
(3)
737-740
-
58
Cassiman D, Libbrecht L, Desmet V, Denef C, Roskams T.
Hepatic stellate cell/myofibroblast subpopulations in fibrotic human and rat livers.
J Hepatol.
2002;
36
(2)
200-209
-
59
Friedman S L.
Mechanisms of hepatic fibrogenesis.
Gastroenterology.
2008;
134
(6)
1655-1669
-
60
Viñas O, Bataller R, Sancho-Bru P et al..
Human hepatic stellate cells show features of antigen-presenting cells and stimulate lymphocyte proliferation.
Hepatology.
2003;
38
(4)
919-929
-
61
Winau F, Hegasy G, Weiskirchen R et al..
Ito cells are liver-resident antigen-presenting cells for activating T cell responses.
Immunity.
2007;
26
(1)
117-129
-
62
Ankoma-Sey V, Wang Y, Dai Z.
Hypoxic stimulation of vascular endothelial growth factor expression in activated rat hepatic stellate cells.
Hepatology.
2000;
31
(1)
141-148
-
63
Novo E, Cannito S, Zamara E et al..
Proangiogenic cytokines as hypoxia-dependent factors stimulating migration of human hepatic stellate cells.
Am J Pathol.
2007;
170
(6)
1942-1953
-
64
Novo E, di Bonzo L V, Cannito S, Colombatto S, Parola M.
Hepatic myofibroblasts: a heterogeneous population of multifunctional cells in liver fibrogenesis.
Int J Biochem Cell Biol.
2009;
41
(11)
2089-2093
-
65
Pinzani M, Marra F.
Cytokine receptors and signaling in hepatic stellate cells.
Semin Liver Dis.
2001;
21
(3)
397-416
-
66
Yavrom S, Chen L, Xiong S, Wang J, Rippe R A, Tsukamoto H.
Peroxisome proliferator-activated receptor gamma suppresses proximal alpha1(I) collagen promoter via inhibition of p300-facilitated NF-I binding to DNA in hepatic stellate cells.
J Biol Chem.
2005;
280
(49)
40650-40659
-
67
Hong F, Tuyama A, Lee T F et al..
Hepatic stellate cells express functional CXCR4: role in stromal cell-derived factor-1alpha-mediated stellate cell activation.
Hepatology.
2009;
49
(6)
2055-2067
-
68
Chesney J, Metz C, Stavitsky A B, Bacher M, Bucala R.
Regulated production of type I collagen and inflammatory cytokines by peripheral blood fibrocytes.
J Immunol.
1998;
160
(1)
419-425
-
69
Quan T E, Cowper S, Wu S P, Bockenstedt L K, Bucala R.
Circulating fibrocytes: collagen-secreting cells of the peripheral blood.
Int J Biochem Cell Biol.
2004;
36
(4)
598-606
-
70
Keeley E C, Mehrad B, Strieter R M.
The role of circulating mesenchymal progenitor cells (fibrocytes) in the pathogenesis of fibrotic disorders.
Thromb Haemost.
2009;
101
(4)
613-618
-
71
Asawa S, Saito T, Satoh A et al..
Participation of bone marrow cells in biliary fibrosis after bile duct ligation.
J Gastroenterol Hepatol.
2007;
22
(11)
2001-2008
-
72
Phillips R J, Burdick M D, Hong K et al..
Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis.
J Clin Invest.
2004;
114
(3)
438-446
-
73
Strieter R M, Gomperts B N, Keane M P.
The role of CXC chemokines in pulmonary fibrosis.
J Clin Invest.
2007;
117
(3)
549-556
-
74
Mehrad B, Burdick M D, Zisman D A, Keane M P, Belperio J A, Strieter R M.
Circulating peripheral blood fibrocytes in human fibrotic interstitial lung disease.
Biochem Biophys Res Commun.
2007;
353
(1)
104-108
-
75
Andersson-Sjöland A, de Alba C G, Nihlberg K et al..
Fibrocytes are a potential source of lung fibroblasts in idiopathic pulmonary fibrosis.
Int J Biochem Cell Biol.
2008;
40
(10)
2129-2140
-
76
Kisseleva T, Uchinami H, Feirt N et al..
Bone marrow-derived fibrocytes participate in pathogenesis of liver fibrosis.
J Hepatol.
2006;
45
(3)
429-438
-
77
Guo J, Friedman S L.
Hepatic fibrogenesis.
Semin Liver Dis.
2007;
27
(4)
413-426
-
78
Jafri M, Donnelly B, Allen S et al..
Cholangiocyte expression of alpha2beta1-integrin confers susceptibility to rotavirus-induced experimental biliary atresia.
Am J Physiol Gastrointest Liver Physiol.
2008;
295
(1)
G16-G26
-
79
Wang B, Dolinski B M, Kikuchi N et al..
Role of alphavbeta6 integrin in acute biliary fibrosis.
Hepatology.
2007;
46
(5)
1404-1412
-
80
Margadant C, Sonnenberg A.
Integrin-TGF-beta crosstalk in fibrosis, cancer and wound healing.
EMBO Rep.
2010;
11
(2)
97-105
-
81
Maeda N, Kawada N, Seki S et al..
Stimulation of proliferation of rat hepatic stellate cells by galectin-1 and galectin-3 through different intracellular signaling pathways.
J Biol Chem.
2003;
278
(21)
18938-18944
-
82
Henderson N C, Mackinnon A C, Farnworth S L et al..
Galectin-3 regulates myofibroblast activation and hepatic fibrosis.
Proc Natl Acad Sci U S A.
2006;
103
(13)
5060-5065
-
83
Chiquet-Ehrismann R, Mackie E J, Pearson C A, Sakakura T.
Tenascin: an extracellular matrix protein involved in tissue interactions during fetal development and oncogenesis.
Cell.
1986;
47
(1)
131-139
-
84
Swindle C S, Tran K T, Johnson T D et al..
Epidermal growth factor (EGF)-like repeats of human tenascin-C as ligands for EGF receptor.
J Cell Biol.
2001;
154
(2)
459-468
-
85
Van Eyken P, Sciot R, Desmet V J.
Expression of the novel extracellular matrix component tenascin in normal and diseased human liver. An immunohistochemical study.
J Hepatol.
1990;
11
(1)
43-52
-
86
Van Eyken P, Geerts A, De Bleser P et al..
Localization and cellular source of the extracellular matrix protein tenascin in normal and fibrotic rat liver.
Hepatology.
1992;
15
(5)
909-916
-
87
Miyazaki H, Van Eyken P, Roskams T, De Vos R, Desmet V J.
Transient expression of tenascin in experimentally induced cholestatic fibrosis in rat liver: an immunohistochemical study.
J Hepatol.
1993;
19
(3)
353-366
-
88
Aishima S, Taguchi K, Terashi T, Matsuura S, Shimada M, Tsuneyoshi M.
Tenascin expression at the invasive front is associated with poor prognosis in intrahepatic cholangiocarcinoma.
Mod Pathol.
2003;
16
(10)
1019-1027
-
89
Roskams T, Rosenbaum J, De Vos R, David G, Desmet V.
Heparan sulfate proteoglycan expression in chronic cholestatic human liver diseases.
Hepatology.
1996;
24
(3)
524-532
-
90
Liu B, Paranjpe S, Bowen W C et al..
Investigation of the role of glypican 3 in liver regeneration and hepatocyte proliferation.
Am J Pathol.
2009;
175
(2)
717-724
-
91
Karlsen T H, Franke A, Melum E et al..
Genome-wide association analysis in primary sclerosing cholangitis.
Gastroenterology.
2010;
138
(3)
1102-1111
-
92
Yasoshima M, Tsuneyama K, Harada K, Sasaki M, Gershwin M E, Nakanuma Y.
Immunohistochemical analysis of cell-matrix adhesion molecules and their ligands in the portal tracts of primary biliary cirrhosis.
J Pathol.
2000;
190
(1)
93-99
-
93
Yasoshima M, Sato Y, Furubo S et al..
Matrix proteins of basement membrane of intrahepatic bile ducts are degraded in congenital hepatic fibrosis and Caroli's disease.
J Pathol.
2009;
217
(3)
442-451
-
94
Joplin R, Hishida T, Tsubouchi H et al..
Human intrahepatic biliary epithelial cells proliferate in vitro in response to human hepatocyte growth factor.
J Clin Invest.
1992;
90
(4)
1284-1289
-
95
Ishida Y, Smith S, Wallace L et al..
Ductular morphogenesis and functional polarization of normal human biliary epithelial cells in three-dimensional culture.
J Hepatol.
2001;
35
(1)
2-9
-
96
Matsuda Y, Matsumoto K, Ichida T, Nakamura T.
Hepatocyte growth factor suppresses the onset of liver cirrhosis and abrogates lethal hepatic dysfunction in rats.
J Biochem.
1995;
118
(3)
643-649
-
97
Yasuda H, Imai E, Shiota A, Fujise N, Morinaga T, Higashio K.
Antifibrogenic effect of a deletion variant of hepatocyte growth factor on liver fibrosis in rats.
Hepatology.
1996;
24
(3)
636-642
-
98
Inagaki Y, Higashi K, Kushida M et al..
Hepatocyte growth factor suppresses profibrogenic signal transduction via nuclear export of Smad3 with galectin-7.
Gastroenterology.
2008;
134
(4)
1180-1190
-
99
Xia J L, Dai C, Michalopoulos G K, Liu Y.
Hepatocyte growth factor attenuates liver fibrosis induced by bile duct ligation.
Am J Pathol.
2006;
168
(5)
1500-1512
-
100
Pinzani M, Gesualdo L, Sabbah G M, Abboud H E.
Effects of platelet-derived growth factor and other polypeptide mitogens on DNA synthesis and growth of cultured rat liver fat-storing cells.
J Clin Invest.
1989;
84
(6)
1786-1793
-
101
Friedman S L, Arthur M J.
Activation of cultured rat hepatic lipocytes by Kupffer cell conditioned medium. Direct enhancement of matrix synthesis and stimulation of cell proliferation via induction of platelet-derived growth factor receptors.
J Clin Invest.
1989;
84
(6)
1780-1785
-
102
Kinnman N, Goria O, Wendum D et al..
Hepatic stellate cell proliferation is an early platelet-derived growth factor-mediated cellular event in rat cholestatic liver injury.
Lab Invest.
2001;
81
(12)
1709-1716
-
103
Lechuga C G, Hernández-Nazara Z H, Hernández E et al..
PI3K is involved in PDGF-beta receptor upregulation post-PDGF-BB treatment in mouse HSC.
Am J Physiol Gastrointest Liver Physiol.
2006;
291
(6)
G1051-G1061
-
104
Rovida E, Navari N, Caligiuri A, Dello Sbarba P, Marra F.
ERK5 differentially regulates PDGF-induced proliferation and migration of hepatic stellate cells.
J Hepatol.
2008;
48
(1)
107-115
-
105
Melton A C, Yee H F.
Hepatic stellate cell protrusions couple platelet-derived growth factor-BB to chemotaxis.
Hepatology.
2007;
45
(6)
1446-1453
-
106
Borkham-Kamphorst E, van Roeyen C R, Ostendorf T, Floege J, Gressner A M, Weiskirchen R.
Pro-fibrogenic potential of PDGF-D in liver fibrosis.
J Hepatol.
2007;
46
(6)
1064-1074
-
107
Liu C, Gaça M D, Swenson E S, Vellucci V F, Reiss M, Wells R G.
Smads 2 and 3 are differentially activated by transforming growth factor-beta (TGF-beta) in quiescent and activated hepatic stellate cells. Constitutive nuclear localization of Smads in activated cells is TGF-beta-independent.
J Biol Chem.
2003;
278
(13)
11721-11728
-
108
Massagué J, Seoane J, Wotton D.
Smad transcription factors.
Genes Dev.
2005;
19
(23)
2783-2810
-
109
Inagaki Y, Okazaki I.
Emerging insights into transforming growth factor beta Smad signal in hepatic fibrogenesis.
Gut.
2007;
56
(2)
284-292
-
110
Roy H, Bhardwaj S, Ylä-Herttuala S.
Biology of vascular endothelial growth factors.
FEBS Lett.
2006;
580
(12)
2879-2887
-
111
Morisada T, Kubota Y, Urano T, Suda T, Oike Y.
Angiopoietins and angiopoietin-like proteins in angiogenesis.
Endothelium.
2006;
13
(2)
71-79
-
112
Gaudio E, Franchitto A, Pannarale L et al..
Cholangiocytes and blood supply.
World J Gastroenterol.
2006;
12
(22)
3546-3552
-
113
Fabris L, Cadamuro M, Libbrecht L et al..
Epithelial expression of angiogenic growth factors modulate arterial vasculogenesis in human liver development.
Hepatology.
2008;
47
(2)
719-728
-
114
Spirli C, Okolicsanyi S, Fiorotto R et al..
ERK1/2-dependent vascular endothelial growth factor signaling sustains cyst growth in polycystin-2 defective mice.
Gastroenterology.
2010;
138
(1)
360-371, e7
-
115
Spirli C, Okolicsanyi S, Fiorotto R et al..
Mammalian target of rapamycin regulates vascular endothelial growth factor-dependent liver cyst growth in polycystin-2-defective mice.
Hepatology.
2010;
51
(5)
1778-1788
-
116
Igarashi P, Somlo S.
Genetics and pathogenesis of polycystic kidney disease.
J Am Soc Nephrol.
2002;
13
(9)
2384-2398
-
117
Wilson P D.
Polycystic kidney disease: new understanding in the pathogenesis.
Int J Biochem Cell Biol.
2004;
36
(10)
1868-1873
-
118
Yoshiji H, Kuriyama S, Yoshii J et al..
Vascular endothelial growth factor and receptor interaction is a prerequisite for murine hepatic fibrogenesis.
Gut.
2003;
52
(9)
1347-1354
-
119
Brodsky K S, McWilliams R R, Amura C R, Barry N P, Doctor R B.
Liver cyst cytokines promote endothelial cell proliferation and development.
Exp Biol Med (Maywood).
2009;
234
(10)
1155-1165
-
120
Aiuti A, Webb I J, Bleul C, Springer T, Gutierrez-Ramos J C.
The chemokine SDF-1 is a chemoattractant for human CD34 + hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34 + progenitors to peripheral blood.
J Exp Med.
1997;
185
(1)
111-120
-
121
Bleul C C, Schultze J L, Springer T A.
B lymphocyte chemotaxis regulated in association with microanatomic localization, differentiation state, and B cell receptor engagement.
J Exp Med.
1998;
187
(5)
753-762
-
122
Tachibana K, Hirota S, Iizasa H et al..
The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract.
Nature.
1998;
393
(6685)
591-594
-
123
Coulomb-L'Hermin A, Amara A, Schiff C et al..
Stromal cell-derived factor 1 (SDF-1) and antenatal human B cell lymphopoiesis: expression of SDF-1 by mesothelial cells and biliary ductal plate epithelial cells.
Proc Natl Acad Sci U S A.
1999;
96
(15)
8585-8590
-
124
Kollet O, Shivtiel S, Chen Y Q et al..
HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34 + stem cell recruitment to the liver.
J Clin Invest.
2003;
112
(2)
160-169
-
125
Ohira S, Itatsu K, Sasaki M et al..
Local balance of transforming growth factor-beta1 secreted from cholangiocarcinoma cells and stromal-derived factor-1 secreted from stromal fibroblasts is a factor involved in invasion of cholangiocarcinoma.
Pathol Int.
2006;
56
(7)
381-389
-
126
Ohira S, Sasaki M, Harada K et al..
Possible regulation of migration of intrahepatic cholangiocarcinoma cells by interaction of CXCR4 expressed in carcinoma cells with tumor necrosis factor-alpha and stromal-derived factor-1 released in stroma.
Am J Pathol.
2006;
168
(4)
1155-1168
-
127
Bradham D M, Igarashi A, Potter R L, Grotendorst G R.
Connective tissue growth factor: a cysteine-rich mitogen secreted by human vascular endothelial cells is related to the SRC-induced immediate early gene product CEF-10.
J Cell Biol.
1991;
114
(6)
1285-1294
-
128
O'Brien T P, Yang G P, Sanders L, Lau L F.
Expression of cyr61, a growth factor-inducible immediate-early gene.
Mol Cell Biol.
1990;
10
(7)
3569-3577
-
129
Ryseck R P, Macdonald-Bravo H, Mattéi M G, Bravo R.
Structure, mapping, and expression of fisp-12, a growth factor-inducible gene encoding a secreted cysteine-rich protein.
Cell Growth Differ.
1991;
2
(5)
225-233
-
130
Igarashi A, Okochi H, Bradham D M, Grotendorst G R.
Regulation of connective tissue growth factor gene expression in human skin fibroblasts and during wound repair.
Mol Biol Cell.
1993;
4
(6)
637-645
-
131
Paradis V, Dargere D, Bonvoust F, Vidaud M, Segarini P, Bedossa P.
Effects and regulation of connective tissue growth factor on hepatic stellate cells.
Lab Invest.
2002;
82
(6)
767-774
-
132
Gao R, Ball D K, Perbal B, Brigstock D R.
Connective tissue growth factor induces c-fos gene activation and cell proliferation through p44/42 MAP kinase in primary rat hepatic stellate cells.
J Hepatol.
2004;
40
(3)
431-438
-
133
Paradis V, Dargere D, Vidaud M et al..
Expression of connective tissue growth factor in experimental rat and human liver fibrosis.
Hepatology.
1999;
30
(4)
968-976
-
134
Kobayashi H, Hayashi N, Hayashi K, Yamataka A, Lane G J, Miyano T.
Connective tissue growth factor and progressive fibrosis in biliary atresia.
Pediatr Surg Int.
2005;
21
(1)
12-16
-
135
Gardini A, Corti B, Fiorentino M et al..
Expression of connective tissue growth factor is a prognostic marker for patients with intrahepatic cholangiocarcinoma.
Dig Liver Dis.
2005;
37
(4)
269-274
-
136
Yang L, Wang Y, Mao H et al..
Sonic hedgehog is an autocrine viability factor for myofibroblastic hepatic stellate cells.
J Hepatol.
2008;
48
(1)
98-106
-
137
Omenetti A, Diehl A M.
The adventures of sonic hedgehog in development and repair. II. Sonic hedgehog and liver development, inflammation, and cancer.
Am J Physiol Gastrointest Liver Physiol.
2008;
294
(3)
G595-G598
-
138
Omenetti A, Porrello A, Jung Y et al..
Hedgehog signaling regulates epithelial-mesenchymal transition during biliary fibrosis in rodents and humans.
J Clin Invest.
2008;
118
(10)
3331-3342
-
139
Jung Y, McCall S J, Li Y X, Diehl A M.
Bile ductules and stromal cells express hedgehog ligands and/or hedgehog target genes in primary biliary cirrhosis.
Hepatology.
2007;
45
(5)
1091-1096
-
140
Omenetti A, Popov Y, Jung Y et al..
The hedgehog pathway regulates remodelling responses to biliary obstruction in rats.
Gut.
2008;
57
(9)
1275-1282
-
141
Logan C Y, Nusse R.
The Wnt signaling pathway in development and disease.
Annu Rev Cell Dev Biol.
2004;
20
781-810
-
142
Sackett S D, Gao Y, Shin S et al..
Foxl1 promotes liver repair following cholestatic injury in mice.
Lab Invest.
2009;
89
(12)
1387-1396
-
143
Monga S P, Monga H K, Tan X, Mulé K, Pediaditakis P, Michalopoulos G K.
Beta-catenin antisense studies in embryonic liver cultures: role in proliferation, apoptosis, and lineage specification.
Gastroenterology.
2003;
124
(1)
202-216
-
144
Hussain S Z, Sneddon T, Tan X, Micsenyi A, Michalopoulos G K, Monga S P.
Wnt impacts growth and differentiation in ex vivo liver development.
Exp Cell Res.
2004;
292
(1)
157-169
-
145
Decaens T, Godard C, de Reyniès A et al..
Stabilization of beta-catenin affects mouse embryonic liver growth and hepatoblast fate.
Hepatology.
2008;
47
(1)
247-258
-
146
Jiang F, Parsons C J, Stefanovic B.
Gene expression profile of quiescent and activated rat hepatic stellate cells implicates Wnt signaling pathway in activation.
J Hepatol.
2006;
45
(3)
401-409
-
147
Myung S J, Yoon J H, Gwak G Y et al..
Wnt signaling enhances the activation and survival of human hepatic stellate cells.
FEBS Lett.
2007;
581
(16)
2954-2958
-
148
Cheng J H, She H, Han Y P et al..
Wnt antagonism inhibits hepatic stellate cell activation and liver fibrosis.
Am J Physiol Gastrointest Liver Physiol.
2008;
294
(1)
G39-G49
-
149
Montcouquiol M, Crenshaw III E B, Kelley M W.
Noncanonical Wnt signaling and neural polarity.
Annu Rev Neurosci.
2006;
29
363-386
-
150
Lancaster M A, Gleeson J G.
Cystic kidney disease: the role of Wnt signaling.
Trends Mol Med.
2010;
16
(8)
349-360
-
151
Lai E C.
Notch signaling: control of cell communication and cell fate.
Development.
2004;
131
(5)
965-973
-
152
Cornell R A, Eisen J S.
Notch in the pathway: the roles of Notch signaling in neural crest development.
Semin Cell Dev Biol.
2005;
16
(6)
663-672
-
153
Blank U, Karlsson G, Karlsson S.
Signaling pathways governing stem-cell fate.
Blood.
2008;
111
(2)
492-503
-
154
Chiba S.
Notch signaling in stem cell system.
Stem Cells.
2006;
24
2437-2447
-
155
Gridley T.
Notch signaling and inherited disease syndromes.
Hum Mol Genet.
2003;
12
(Spec No 1)
R9-R13
-
156
Schweisguth F.
Regulation of notch signaling activity.
Curr Biol.
2004;
14
(3)
R129-R138
-
157
Zong Y, Panikkar A, Xu J et al..
Notch signaling controls liver development by regulating biliary differentiation.
Development.
2009;
136
(10)
1727-1739
-
158
Lemaigre F P.
Notch signaling in bile duct development: new insights raise new questions.
Hepatology.
2008;
48
(2)
358-360
-
159
Tanimizu N, Miyajima A.
Notch signaling controls hepatoblast differentiation by altering the expression of liver-enriched transcription factors.
J Cell Sci.
2004;
117
(Pt 15)
3165-3174
-
160
McDaniell R, Warthen D M, Sanchez-Lara P A et al..
NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway.
Am J Hum Genet.
2006;
79
(1)
169-173
-
161
Li L, Krantz I D, Deng Y et al..
Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1.
Nat Genet.
1997;
16
(3)
243-251
-
162
Oda T, Elkahloun A G, Pike B L et al..
Mutations in the human Jagged1 gene are responsible for Alagille syndrome.
Nat Genet.
1997;
16
(3)
235-242
-
163
Crosnier C, Attié-Bitach T, Encha-Razavi F et al..
JAGGED1 gene expression during human embryogenesis elucidates the wide phenotypic spectrum of Alagille syndrome.
Hepatology.
2000;
32
(3)
574-581
-
164
Piccoli D A, Spinner N B.
Alagille syndrome and the Jagged1 gene.
Semin Liver Dis.
2001;
21
(4)
525-534
-
165
Desmet V J.
Ludwig symposium on biliary disorders—part I. Pathogenesis of ductal plate abnormalities.
Mayo Clin Proc.
1998;
73
(1)
80-89
-
166
Katuri V, Tang Y, Li C et al..
Critical interactions between TGF-beta signaling/ELF, and E-cadherin/beta-catenin mediated tumor suppression.
Oncogene.
2006;
25
(13)
1871-1886
-
167
Brabletz S, Schmalhofer O, Brabletz T.
Gastrointestinal stem cells in development and cancer.
J Pathol.
2009;
217
(2)
307-317
-
168
Fujikura J, Hosoda K, Iwakura H et al..
Notch/Rbp-j signaling prevents premature endocrine and ductal cell differentiation in the pancreas.
Cell Metab.
2006;
3
(1)
59-65
-
169
Farnie G, Clarke R B.
Mammary stem cells and breast cancer—role of Notch signalling.
Stem Cell Rev.
2007;
3
(2)
169-175
-
170
Blank U, Karlsson G, Karlsson S.
Signaling pathways governing stem-cell fate.
Blood.
2008;
111
(2)
492-503
-
171
Alexson T O, Hitoshi S, Coles B L, Bernstein A, van der Kooy D.
Notch signaling is required to maintain all neural stem cell populations—irrespective of spatial or temporal niche.
Dev Neurosci.
2006;
28
(1-2)
34-48
-
172
Zanotti S, Canalis E.
Notch and the skeleton.
Mol Cell Biol.
2010;
30
(4)
886-896
-
173
Felszeghy S, Suomalainen M, Thesleff I.
Notch signalling is required for the survival of epithelial stem cells in the continuously growing mouse incisor.
Differentiation.
2010;
80
241-248
-
174
Dellatore S M, Garcia A S, Miller W M.
Mimicking stem cell niches to increase stem cell expansion.
Curr Opin Biotechnol.
2008;
19
(5)
534-540
-
175
Nijjar S S, Wallace L, Crosby H A, Hubscher S G, Strain A J.
Altered Notch ligand expression in human liver disease: further evidence for a role of the Notch signaling pathway in hepatic neovascularization and biliary ductular defects.
Am J Pathol.
2002;
160
(5)
1695-1703
-
176
Spee B, Carpino G, Schotanus B A et al..
Characterisation of the liver progenitor cell niche in liver diseases: potential involvement of Wnt and Notch signalling.
Gut.
2010;
59
(2)
247-257
-
177
Fabris L, Cadamuro M, Guido M et al..
Analysis of liver repair mechanisms in Alagille syndrome and biliary atresia reveals a role for notch signaling.
Am J Pathol.
2007;
171
(2)
641-653
-
178
Fiorotto R, Spirli C, Scirpo R et al..
Progenitor cell activation and liver repair is altered in Notch2- and RBP-Jk-defective mice exposed to cholestatic injuries.
J Hepatol.
2010;
52
S45
-
179
Sawitza I, Kordes C, Reister S, Häussinger D.
The niche of stellate cells within rat liver.
Hepatology.
2009;
50
(5)
1617-1624
-
180
Venkov C D, Link A J, Jennings J L et al..
A proximal activator of transcription in epithelial-mesenchymal transition.
J Clin Invest.
2007;
117
(2)
482-491
-
181
Rhyu D Y, Yang Y, Ha H et al..
Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial-mesenchymal transition in renal tubular epithelial cells.
J Am Soc Nephrol.
2005;
16
(3)
667-675
-
182
Zeisberg M, Neilson E G.
Biomarkers for epithelial-mesenchymal transitions.
J Clin Invest.
2009;
119
(6)
1429-1437
-
183
Sato Y, Harada K, Ozaki S et al..
Cholangiocytes with mesenchymal features contribute to progressive hepatic fibrosis of the polycystic kidney rat.
Am J Pathol.
2007;
171
(6)
1859-1871
-
184
Harada K, Sato Y, Ikeda H et al..
Epithelial-mesenchymal transition induced by biliary innate immunity contributes to the sclerosing cholangiopathy of biliary atresia.
J Pathol.
2009;
217
(5)
654-664
-
185
Sato Y, Harada K, Itatsu K et al..
Epithelial-mesenchymal transition induced by transforming growth factor-beta1/snail activation aggravates invasive growth of cholangiocarcinoma.
Am J Pathol.
2010;
177
(1)
141-152
-
186
Strutz F, Okada H, Lo C W et al..
Identification and characterization of a fibroblast marker: FSP1.
J Cell Biol.
1995;
130
(2)
393-405
-
187
Le Hir M, Hegyi I, Cueni-Loffing D, Loffing J, Kaissling B.
Characterization of renal interstitial fibroblast-specific protein 1/S100A4-positive cells in healthy and inflamed rodent kidneys.
Histochem Cell Biol.
2005;
123
(4-5)
335-346
-
188
Taura K, Miura K, Iwaisako K et al..
Hepatocytes do not undergo epithelial-mesenchymal transition in liver fibrosis in mice.
Hepatology.
2010;
51
(3)
1027-1036
-
189
Lorent K, Yeo S Y, Oda T et al..
Inhibition of Jagged-mediated Notch signaling disrupts zebrafish biliary development and generates multi-organ defects compatible with an Alagille syndrome phenocopy.
Development.
2004;
131
(22)
5753-5766
-
190
Antoniou A, Raynaud P, Cordi S et al..
Intrahepatic bile ducts develop according to a new mode of tubulogenesis regulated by the transcription factor SOX9.
Gastroenterology.
2009;
136
(7)
2325-2333
-
191
Libbrecht L, Spinner N B, Moore E C, Cassiman D, Van Damme-Lombaerts R, Roskams T.
Peripheral bile duct paucity and cholestasis in the liver of a patient with Alagille syndrome: further evidence supporting a lack of postnatal bile duct branching and elongation.
Am J Surg Pathol.
2005;
29
(6)
820-826
-
192
Clotman F, Jacquemin P, Plumb-Rudewiez N et al..
Control of liver cell fate decision by a gradient of TGF beta signaling modulated by Onecut transcription factors.
Genes Dev.
2005;
19
(16)
1849-1854
-
193
Blechacz B, Gores G J.
Cholangiocarcinoma: advances in pathogenesis, diagnosis, and treatment.
Hepatology.
2008;
48
(1)
308-321
-
194
Mueller M M, Fusenig N E.
Friends or foes - bipolar effects of the tumour stroma in cancer.
Nat Rev Cancer.
2004;
4
(11)
839-849
-
195
Kalluri R, Weinberg R A.
The basics of epithelial-mesenchymal transition.
J Clin Invest.
2009;
119
(6)
1420-1428
-
196
Yauch R L, Gould S E, Scales S J et al..
A paracrine requirement for hedgehog signalling in cancer.
Nature.
2008;
455
(7211)
406-410
-
197
Erez N, Truitt M, Olson P, Arron S T, Hanahan D.
Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner.
Cancer Cell.
2010;
17
(2)
135-147
-
198
Kalluri R, Zeisberg M.
Fibroblasts in cancer.
Nat Rev Cancer.
2006;
6
(5)
392-401
-
199
Santamaria-Martínez A, Barquinero J, Barbosa-Desongles A et al..
Identification of multipotent mesenchymal stromal cells in the reactive stroma of a prostate cancer xenograft by side population analysis.
Exp Cell Res.
2009;
315
(17)
3004-3013
-
200
Thiery J P, Sleeman J P.
Complex networks orchestrate epithelial-mesenchymal transitions.
Nat Rev Mol Cell Biol.
2006;
7
(2)
131-142
-
201
Kalluri R.
EMT: when epithelial cells decide to become mesenchymal-like cells.
J Clin Invest.
2009;
119
(6)
1417-1419
Mario StrazzaboscoM.D. Ph.D.
Department of Internal Medicine, Section of Digestive Diseases
Yale University School of Medicine, 333 Cedar Street LMP 1080, New Haven, CT 06520
Email: mario.strazzabosco@yale.edu