Aktuelle Rheumatologie 2011; 36(5): 291-296
DOI: 10.1055/s-0031-1273698
Übersichtsarbeit

© Georg Thieme Verlag KG Stuttgart · New York

Skelettale Komplikationen bei chronischer Niereninsuffizienz und nach Nierentransplantation

Skeletal Complications in Chronic Renal Failure and after Renal TransplantationG. Lehmann1 , G. Wolf1
  • 1Klinikum der Friedrich-Schiller-Universität Jena, Klinik für Innere Medizin III, Jena
Further Information

Publication History

Publication Date:
08 April 2011 (online)

Zusammenfassung

Die chronische Niereninsuffizienz ist weltweit eine Erkrankung mit zunehmender Prävalenz, hoher Morbiditätsrate, verminderter Lebensqualität und steigender Mortalität. Neben arterieller Hypertonie, Proteinurie, metabolischer Azidose, Anämie und einer gesteigerten kardiovaskulären Mortalität stellen Knochenstoffwechselstörungen, für deren exakte Differenzierung eine knochenhistologische Untersuchung unabdingbar ist, eine obligate Komplikation dar. Weiterhin besteht im Rahmen des chronischen Entzündungsprozesses bei langjähriger Dialyse die Gefahr der Entwicklung eine ß2Amyloisose mit schmerzhaften Weichteil- und Knochenmanifestationen. Schließlich stellen Knochenschmerzen nach Nierentransplantation als Folge einer immunsuppressiven Therapie eine differenzialdiagnostische und therapeutische Herausforderung dar.

Abstract

Chronic kidney disease is an increasing international public health problem. It is strongly related to high morbidity, loss of quality of life and increasing mortality. Beside hypertension, proteinuria, anaemia and extraskeletal calcifications systemic complications comprise disturbances in bone turnover as well. Precise identification of bone turnover disturbances requires bone histomorphometry. Furthermore, dialysis-related ß2 amyloidosis is associated with various osteoarticular lesions. Finally bone pain after renal transplantation as a consequence of immunosuppressive therapy poses a diagnostic and therapeutic challenge.

Literatur

  • 1 Torres A, Lorenzo V, Hernandez D. et al . Bone disease in predialysis, hemodialysis, and CAPD patients: evidence of a better bone response to PTH.  Kidney International. 1995;  47 1434-1442
  • 2 Eastwood JB, Bordier PJ, de Wardener HE. Some biochemical, histological, radiological and clinical features of renal osteodystrophy.  Kidney International. 1973;  4 128-140
  • 3 Stehman-Breen CO, Sherrard DJ, Alem AM. et al . Risk factors for hip fracture among patients with end-stage renal disease.  Kidney International. 2000;  58 2200-2205
  • 4 Coco M, Rush H. Increased incidence of hip fractures in dialysis patients with low serum parathyroid hormone.  American Journal of Kidney Diseases. 2000;  36 1115-1121
  • 5 Rostand SG, Drueke TB. Parathyroid hormone, vitamin D, and cardiovascular disease in chronic renal failure.  Kidney International. 1999;  56 383-392
  • 6 Block GA, Hulbert-Shearon TE, Levin NW. et al . Association of serum phosphorus and calcium x phosphate product with mortality risk in chronic hemodialysis patients: a national study.  American Journal of Kidney Diseases. 1998;  31 607-617
  • 7 London GM, Marty C, Marchais SJ. et al . Arterial calcifications and bone histomorphometry in end-stage renal disease.  Journal of the American Society of Nephrology. 2004;  15 1943-1951
  • 8 Kidney disease: improvimg Global Outcomes (KDIGO) CKD-MBD Work Group . KDIGO clinical practice guideline for the diagnosis, evaluation, prevention and treatment of chronic-kidney disease-mineral and bone disorder (CKD-MBD).  Kidney International. 2009;  76 ((Suppl. 113)) S1-S130
  • 9 Bricker NS. On the pathogenesis of the uremic state. An exposition of the “trade-off hypothesis”.  New England Journal of Medicine. 1972;  286 1093-1099
  • 10 Owen TA, Aronow MS, Barone LM. et al . Pleiotropic effects of vitamin D on osteoblast gene expression are related to the proliferative and differentiated state of the bone cell phenotype: dependency upon basal levels of gene expression, duration of exposure, and bone matrix competency in normal rat osteoblast cultures.  Endocrinology. 1991;  128 1496-1504
  • 11 Brown EM, Gamba G, Riccardi D. et al . Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid.  Nature. 1993;  366 575-580
  • 12 Diaz Lopez JB, Jorgetti V, Caorsi H. et al . Epidemiology of renal osteodystrophy in Iberoamerica.  Nephrology Dialysis Transplantation. 1998;  13 (S 03) 41-45
  • 13 Moriniere P, Cohen-Solal M, Belbrik S. et al . Disappearance of aluminic bone disease in a long term asymptomatic dialysis population restricting A1(OH)3 intake: emergence of an idiopathic adynamic bone disease not related to aluminum.  Nephron. 1989;  53 93-101
  • 14 Mucsi I, Hercz G. Relative hypoparathyroidism and adynamic bone disease.  American Journal of the Medical Sciences. 1999;  317 405-409
  • 15 Spasovski GB, Bervoets AR, Behets GJ. et al . Spectrum of renal bone disease in end-stage renal failure patients not yet on dialysis.  Nephrology Dialysis Transplantation. 2003;  18 1159-1166
  • 16 Massry SG, Stein R, Garty J. et al . Skeletal resistance to the calcemic action of parathyroid hormone in uremia: role of 1,25 (OH)2 D3.  Kidney International. 1976;  9 467-474
  • 17 Ritz E, Malluche HH, Krempien B. et al . Pathogenesis of renal osteodystrophy: roles of phosphate and skeletal resistance to PTH.  Advances in Experimental Medicine & Biology. 1978;  103 423-436
  • 18 Bushinsky DA, Frick KK. The effects of acid on bone.  Curr Opin Nephrol Hypertens. 2000;  9 369-379
  • 19 Aoki Y, Ichimura S, Kikuchi T. et al . Overexpression of the human interleukin 1a gene causes osteopenia in mice.  Journal of Rheumatology. 2005;  32 320-324
  • 20 Venken K, De Gendt K, Boonen S. et al . Relative impact of androgen and estrogen receptor activation in the effects of androgens on trabecular and cortical bone in growing male mice: a study in the androgen receptor knockout mouse model.  Journal of Bone & Mineral Research. 2006;  21 576-585
  • 21 Malluche HH, Monier-Faugere MC. Risk of adynamic bone disease in dialyzed patients.  Kidney International – Supplement. 1992;  38 S62-S67
  • 22 Moe S, Drueke T, Cunningham J. et al . Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO).  Kidney International. 2006;  69 1945-1953
  • 23 Al Badr W, Martin KJ. Role of bone biopsy in renal osteodystrophy.  Saudi Journal of Kidney Diseases & Transplantation. 2009;  20 12-19
  • 24 Lehmann G, Ott U, Kaemmerer D. et al . Bone histomorphometry and biochemical markers of bone turnover in patients with chronic kidney disease Stages 3–5.  Clinical Nephrology. 2008;  70 296-305
  • 25 Cummings SR, Black DM, Nevitt MC. et al . Bone density at various sites for prediction of hip fractures. The Study of Osteoporotic Fractures Research Group.  Lancet. 1993;  341 72-75
  • 26 Gerakis A, Hadjidakis D, Kokkinakis E. et al . Correlation of bone mineral density with the histological findings of renal osteodystrophy in patients on hemodialysis.  Journal of Nephrology. 2000;  13 437-443
  • 27 Sherrard DJ, Hercz G, Pei Y. et al . The spectrum of bone disease in end-stage renal failure – an evolving disorder.  Kidney International. 1993;  43 436-442
  • 28 Lehmann G, Ott U, Stein G. et al . Renal osteodystrophy after successful renal transplantation: a histomorphometric analysis in 57 patients.  Transplantation Proceedings. 2007;  39 3153-3158
  • 29 Gorevic PD, Casey TT, Stone WJ. et al . Beta-2 microglobulin is an amyloidogenic protein in man.  Journal of Clinical Investigation. 1985;  76 2425-2429
  • 30 Gejyo F, Yamada T, Odani S. et al . A new form of amyloid protein associated with chronic hemodialysis was identified as beta 2-microglobulin.  Biochemical & Biophysical Research Communications. 1985;  129 701-706
  • 31 Vincent C, Revillard JP. Beta-2-microglobulin and HLA-related glycoproteins in human urine and serum.  Contributions to Nephrology. 1981;  26 66-88
  • 32 Winchester JF, Salsberg JA, Levin NW. Beta-2 microglobulin in ESRD: an in-depth review.  Advances in Renal Replacement Therapy. 2003;  10 279-309
  • 33 Niwa T. Beta2-Microglobulin dialysis amyloid and its formation: role of 3-deoxyglucosone and advanced glycation end products.  Nephron. 1997;  76 373-391
  • 34 Stein G, Schneider A, Thoss K. et al . Beta 2-microglobulin serum concentration and associated amyloidosis in dialysis patients.  Nephrology Dialysis Transplantation. 1991;  6 (S 03) 57-61
  • 35 Zingraff J, Drueke T. Can the nephrologist prevent dialysis-related amyloidosis?.  American Journal of Kidney Diseases. 1991;  18 1-11
  • 36 Gejyo F, Arakawa M. Dialysis amyloidosis: current disease concepts and new perspectives for its treatment.  Contributions to Nephrology. 1990;  78 47-59 discussion 59–60
  • 37 Charra B, Calemard E, Uzan M. et al . Carpal tunnel syndrome, shoulder pain and amyloid deposits in long-term haemodialysis patients.  Proceedings of the European Dialysis & Transplant Association – European Renal Association. 1985;  21 291-295
  • 38 Garbar C, Jadoul M, Noel H. et al . Histological characteristics of sternoclavicular beta 2-microglobulin amyloidosis and clues for its histogenesis.  Kidney International. 1999;  55 1983-1990
  • 39 Morita T, Suzuki M, Kamimura A. et al . Amyloidosis of a possible new type in patients receiving long-term hemodialysis.  Archives of Pathology & Laboratory Medicine. 1985;  109 1029-1032
  • 40 Bardin T, Zingraff J, Shirahama T. et al . Hemodialysis-associated amyloidosis and beta-2 microglobulin. Clinical and immunohistochemical study.  American Journal of Medicine. 1987;  83 419-424
  • 41 Lonnemann G, Koch KM. Beta(2)-microglobulin amyloidosis: effects of ultrapure dialysate and type of dialyzer membrane.  Journal of the American Society of Nephrology. 2002;  13 (S 01) S72-S77
  • 42 Evenepoel P, Claes K, Kuypers D. et al . Impact of parathyroidectomy on renal graft function, blood pressure and serum lipids in kidney transplant recipients: a single centre study.  Nephrology Dialysis Transplantation. 2005;  20 1714-1720
  • 43 Griffin MD, Kumar R. Multiple potential clinical benefits for 1alpha,25-dihydroxyvitamin D3 analogs in kidney transplant recipients.  Journal of Steroid Biochemistry & Molecular Biology. 2005;  97 213-218
  • 44 Serra AL, Schwarz AA, Wick FH. et al . Successful treatment of hypercalcemia with cinacalcet in renal transplant recipients with persistent hyperparathyroidism.  Nephrology Dialysis Transplantation. 2005;  20 1315-1319
  • 45 Noda Y, Kodama K, Yasuda T. et al . Calcineurin-inhibitor-induced pain syndrome after bone marrow transplantation.  Journal of Anesthesia. 2008;  22 61-63
  • 46 Lucas VP, Ponge TD, Plougastel-Lucas ML. et al . Musculoskeletal pain in renal-transplant recipients.  New England Journal of Medicine. 1991;  325 1449-1450
  • 47 Stevens JM, Hilson AJ, Sweny P. Post-renal transplant distal limb bone pain. An under-recognized complication of transplantation distinct from avascular necrosis of bone?.  Transplantation. 1995;  60 305-307
  • 48 Grotz WH, Breitenfeldt MK, Braune SW. et al . Calcineurin-inhibitor induced pain syndrome (CIPS): a severe disabling complication after organ transplantation.  Transplant International. 2001;  14 16-23

Korrespondenzadresse

PD Dr. med. habil. Gabriele Lehmann

Klinikum der Friedrich-Schiller-

Universität Jena

Klinik für Innere Medizin III

Erlanger Allee 101

07740 Jena

Phone: + 49/03641/932 43 27

Fax: + 49/03641/932 43 62

Email: Gabriele.Lehmann@med.uni-jena.de

    >