Anästhesiol Intensivmed Notfallmed Schmerzther 2011; 46(4): 268-275
DOI: 10.1055/s-0031-1275784
Fachwissen
AINS-Topthema: Insulinresistenz: Bedeutung in Anästhesie und Intensivmedizin
© Georg Thieme Verlag Stuttgart · New York

Insulinresistenz: Bedeutung in Anästhesie und Intensivmedizin – Insulinresistenz und Proteinkatabolie bei kritisch Kranken

Insulin resistance and protein catabolism in critically ill patientsJeffrey Bierbrauer, Steffen Weber-Carstens
Further Information

Publication History

Publication Date:
11 April 2011 (online)

Zusammenfassung

Hyperglykäme Stoffwechselentgleisungen sind ein beim Intensivpatienten häufig zu beobachtendes Phänomen. Zur Hyperglykämie kommt es einerseits durch eine herabgesetzte Glukoseutilisation peripherer Gewebe trotz normaler oder erhöhter Plasmainsulinspiegel (periphere Insulinresistenz), andererseits durch die im Rahmen von Stressreaktion und/oder zentraler Insulinresistenz vermehrte hepatische Glukosebereitstellung infolge gesteigerter Glykogenolyse und Glukoneogenese. Da verschiedene Faktoren bei der intensivmedizinischen Behandlung eine Hyperglykämie bzw. eine Insulinresistenz bedingen oder aggravieren können, ist eine multifaktorielle Pathogenese wahrscheinlich. Tierexperimentelle Studien legen zudem nahe, dass bei der peripheren Insulinresistenz eine Störung bzw. Abschwächung des anabolen Insulinsignals resultiert.

Abstract

Hyperglycemia is a frequently observed phenomenon in critically ill patients, affecting numerous patients without a history of impaired glucose tolerance or diabetes. During critical illness, hyperglycemia may result from decreased peripheral glucose uptake and/or utilisation in presence of normal or elevated plasma insulin levels (peripheral insulin resistance) as well as an increase in hepatic glucose production due to augmented glycogenolysis and gluconeogenesis resulting from stress and/or central (hepatic) insulin resistance. As there are a number of factors that cause or aggravate hyperglycemia / insulin resistance during the intensive care unit (ICU) stay, a multifactorial etiology is likely. Furthermore, animal models of sepsis suggest a decrease in anabolic insulin signalling within skeletal muscle.

Kernaussagen

  • Hyperglykämien betreffen einen Großteil der intensivmedizinisch behandelten Patienten.

  • Die meisten der betroffenen Intensivpatienten haben keine vorbestehende Insulinsensitivitätsstörung.

  • Durch Stress werden vermehrt Hormone mit blutzuckersteigernder Wirkung freigesetzt.

  • Im Rahmen der zentralen Insulinresistenz kommt es trotz normaler oder erhöhter Insulinplasmaspiegel zur vermehrten hepatischen Glukoseproduktion bei Glykogenolyse und Glukoneogenese. Es resultiert eine Hyperglykämie.

  • Bei der peripheren Insulinresistenz ist der Insulinplasmaspiegel normal oder erhöht. Trotzdem wird insulinabhängig weniger Glukose aufgenommen – insbesondere in der Skelettmuskulatur und im Fettgewebe. Es kommt zur Hyperglykämie.

  • Durch den vermehrten Proteinabbau fallen mehr glukoneogene Substrate für die hepatische Glukoneogenese an.

  • Bei der Insulinresistenz des Fettgewebes wird die Lipolyse gesteigert. Es resultiert ein vermehrter Anfall glukoneogener Substrate für die hepatische Glukoneogenese.

  • Trauma, Inflammation, Sepsis, Zytokine, Immobilisierung, Bettruhe, Medikamente und andere Faktoren sind mit einer zentral bzw. peripher herabgesetzten Insulinsensitivität assoziiert.

  • Im Rahmen der Insulinsignaltransduktion wird die Atrophiegenexpression gehemmt.

  • Die hyperglykäme Stoffwechsellage ist einer der zentralen Risikofaktoren der ICU-acquired-Weakness.

  • Die aktuelle Evidenzlage hinsichtlich Nutzen und Risiko der intensivierten Insulintherapie ist widersprüchlich.

  • Der Großteil des pathophysiologischen Verständnisses hinsichtlich der akuten Insulinresistenz während der kritischen Erkrankung beruht bislang auf tierexperimentellen Daten.

Weiteres Material zum Artikel

Literatur

  • 1 Freire AX et al.. Admission hyperglycemia and other risk factors as predictors of hospital mortality in a medical ICU population.  Chest. 2005;  128 3109-3116
  • 2 Mizock BA. Alterations in fuel metabolism in critical illness: hyperglycaemia. Best Practice & Research.  Clinical Endocrinology & Metabolism. 2001;  15 533-551
  • 3 Siegel JH et al.. Physiological and metabolic correlations in human sepsis. Invited commentary.  Surgery. 1979;  86 163-193
  • 4 Frayn KN et al.. The relationship of plasma catecholamines to acute metabolic and hormonal responses to injury in man.  Circulatory Shock. 1985;  16 229-240
  • 5 Miyoshi H et al.. Hormonal control of substrate cycling in humans.  The Journal of Clinical Investigation. 1988;  81 1545-1555
  • 6 Wolfe RR. Substrate utilization/insulin resistance in sepsis/trauma.  Baillière's Clinical Endocrinology and Metabolism. 1997;  11 645-657
  • 7 Robinson LE, van Soeren MH. Insulin resistance and hyperglycemia in critical illness: role of insulin in glycemic control.  AACN Clinical Issues. 2004;  15 45-62
  • 8 Mizock BA. Alterations in carbohydrate metabolism during stress: a review of the literature.  The American Journal of Medicine. 1995;  98 75-84
  • 9 Wolfe RR. Carbohydrate metabolism in the critically ill patient. Implications for nutritional support.  Critical Care Clinics. 1987;  3 11-24
  • 10 Lang C, Dobrescu C, Bagby G. Tumor necrosis factor impairs insulin action on peripheral glucose disposal and hepatic glucose output.  Endocrinology. 1992;  130 43-52
  • 11 Rotter V, Nagaev I, Smith U. Interleukin-6 (IL-6) Induces Insulin Resistance in 3T3-L1 Adipocytes and Is, Like IL-8 and Tumor Necrosis Factor-α, Overexpressed in Human Fat Cells from Insulin-resistant Subjects.  Journal of Biological Chemistry. 2003;  278 45777-45784
  • 12 Agwunobi AO et al.. Insulin resistance and substrate utilization in human endotoxemia.  The Journal of Clinical Endocrinology and Metabolism. 2000;  85 3770-3778
  • 13 Sonne MP et al.. Effect of 10 days of bedrest on metabolic and vascular insulin action: a study in individuals at risk for type 2 diabetes.  Journal of Applied Physiology. (Bethesda, Md.: 1985) 2010;  830-837
  • 14 Malmberg K et al.. Randomized trial of insulin-glucose infusion followed by subcutaneous insulin treatment in diabetic patients with acute myocardial infarction (DIGAMI study): effects on mortality at 1 year.  Journal of the American College of Cardiology. 1995;  26 57-65
  • 15 Furnary AP et al.. Continuous intravenous insulin infusion reduces the incidence of deep sternal wound infection in diabetic patients after cardiac surgical procedures.  The Annals of Thoracic Surgery. discussion 1999;  67 360-362
  • 16 van den Berghe G et al.. Intensive insulin therapy in the critically ill patients.  The New England Journal of Medicine. 2001;  345 1359-1367
  • 17 van den Berghe G et al.. Intensive insulin therapy in the medical ICU.  The New England Journal of Medicine. 2006;  354 449-461
  • 18 Preiser J et al.. A prospective randomised multi-centre controlled trial on tight glucose control by intensive insulin therapy in adult intensive care units: the Glucontrol study.  Intensive Care Medicine. 2009;  35 1738-1748
  • 19 Brunkhorst FM et al.. Intensive insulin therapy and pentastarch resuscitation in severe sepsis.  The New England Journal of Medicine. 2008;  358 125-139
  • 20 Finfer S et al.. Intensive versus conventional glucose control in critically ill patients.  The New England Journal of Medicine. 2009;  360 1283-1297
  • 21 Inzucchi SE, Siegel MD. Glucose Control in the ICU How Tight Is Too Tight?.  New England Journal of Medicine. 2009;  360 1346-1349
  • 22 Friedrich JO, Chant C, Adhikari NKJ. Does intensive insulin therapy really reduce mortality in critically ill surgical patients? A reanalysis of meta-analytic data.  Critical Care. 2010;  14 324
  • 23 Zaid H et al.. Insulin action on glucose transporters through molecular switches, tracks and tethers.  The Biochemical Journal. 2008;  413 201-215
  • 24 Pessin JE, Bell GI. Mammalian facilitative glucose transporter family: structure and molecular regulation.  Annual Review of Physiology. 1992;  54 911-930
  • 25 Saeed M et al.. Selective impairment of glucose storage in human sepsis.  The British Journal of Surgery. 1999;  86 813-821
  • 26 Black PR et al.. Mechanisms of insulin resistance following injury.  Annals of Surgery. 1982;  196 420-435
  • 27 Zauner A et al.. Severity of insulin resistance in critically ill medical patients.  Metabolism: Clinical and Experimental. 2007;  56 1-5
  • 28 McCowen KC et al.. Sustained endotoxemia leads to marked down-regulation of early steps in the insulin-signaling cascade.  Critical Care Medicine. 2001;  29 839-846
  • 29 Xu J et al.. Trauma and hemorrhage-induced acute hepatic insulin resistance: dominant role of tumor necrosis factor-alpha.  Endocrinology. 2008;  149 2369-2382
  • 30 Defalque D et al.. GH insensitivity induced by endotoxin injection is associated with decreased liver GH receptors.  The American Journal of Physiology. 1999;  276 565-572
  • 31 Nakhjavani M et al.. Changes in growth hormone and insulin-like growth factor-I levels in the acute stage after open heart surgery and at the time of discharge. Experimental and Clinical Endocrinology & Diabetes: Official Journal, German Society of Endocrinology and German Diabetes Association.  2009;  117 413-416
  • 32 Takala J et al.. Increased mortality associated with growth hormone treatment in critically ill adults.  The New England Journal of Medicine. 1999;  341 785-792
  • 33 Latres E et al.. Insulin-like growth factor-1 (IGF-1) inversely regulates atrophy-induced genes via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway.  The Journal of Biological Chemistry. 2005;  280 2737-2744
  • 34 Attard-Montalto SP et al.. Changes in protein turnover, IGF-I and IGF binding proteins in children with cancer.  Acta Paediatrica. 1998;  87 54-60
  • 35 Fan J et al.. Differential tissue regulation of insulin-like growth factor-I content and binding proteins after endotoxin.  Endocrinology. 1994;  134 1685-1692
  • 36 Costelli P et al.. IGF-1 is downregulated in experimental cancer cachexia.  American Journal of Physiology. 2006;  291 674-683
  • 37 Argilés JM, López-Soriano FJ. Catabolic proinflammatory cytokines.  Current Opinion in Clinical Nutrition and Metabolic Care. 1998;  1 245-251
  • 38 Guimarães SM et al.. Low insulin-like growth factor-1 and hypocholesterolemia as mortality predictors in acute kidney injury in the intensive care unit.  Critical Care Medicine. 2008;  36 3165-3170
  • 39 Mesotten D et al.. Regulation of insulin-like growth factor binding protein-1 during protracted critical illness.  The Journal of Clinical Endocrinology and Metabolism. 2002;  87 5516-5523
  • 40 Baxter RC. Insulin-like growth factor (IGF)-binding proteins: interactions with IGFs and intrinsic bioactivities.  American Journal of Physiology. 2000;  278 967-976
  • 41 Nunes AL et al.. Tissue-specific regulation of early steps in insulin action in septic rats.  Life Sciences. 2001;  69 2103-2112
  • 42 Thirone ACP, Huang C, Klip A. Tissue-specific roles of IRS proteins in insulin signaling and glucose transport.  TEM. 2006;  17 72-78
  • 43 Weinstein SP et al.. Dexamethasone inhibits insulin-stimulated recruitment of GLUT4 to the cell surface in rat skeletal muscle.  Metabolism: Clinical and Experimental. 1998;  47 3-6
  • 44 Green CJ et al.. Septic patients in multiple organ failure can oxidize infused glucose, but non-oxidative disposal (storage) is impaired.  Clinical Science. 1995;  89 601-609
  • 45 Wolfe RR et al.. Isotopic evaluation of the metabolism of pyruvate and related substrates in normal adult volunteers and severely burned children: effect of dichloroacetate and glucose infusion.  Surgery. 1991;  110 54-67
  • 46 Shangraw RE et al.. Pyruvate dehydrogenase inactivity is not responsible for sepsis-induced insulin resistance.  Critical Care Medicine. 1996;  24 566-574
  • 47 Korshunov SS, Skulachev VP, Starkov AA. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria.  FEBS Letters. 1997;  416 15-18
  • 48 Hara K et al.. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism.  The Journal of Biological Chemistry. 1998;  273 14484-14494
  • 49 Russell ST et al.. Mechanism of induction of muscle protein loss by hyperglycaemia.  Experimental Cell Research. 2009;  315 16-25
  • 50 Bamman MM et al.. Mechanical load increases muscle IGF-I and androgen receptor mRNA concentrations in humans.  American Journal of Physiology. Endocrinology and Metabolism. 2001;  280 383-390
  • 51 Strasser EM et al.. Neuromuscular electrical stimulation reduces skeletal muscle protein degradation and stimulates insulin-like growth factors in an age- and current-dependent manner: a randomized, controlled clinical trial in major abdominal surgical patients.  Annals of Surgery. 2009;  249 738-743
  • 52 Lund S et al.. Contraction stimulates translocation of glucose transporter GLUT4 in skeletal muscle through a mechanism distinct from that of insulin.  Proceedings of the National Academy of Sciences of the United States of America. 1995;  92 5817-5821
  • 53 Mitch WE, Goldberg AL. Mechanisms of muscle wasting. The role of the ubiquitin-proteasome pathway.  The New England Journal of Medicine. 1996;  335 1897-1905
  • 54 Lecker SH et al.. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression.  The FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology. 2004;  18 39-51
  • 55 Gomes MD et al.. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy.  Proceedings of the National Academy of Sciences of the United States of America. 2001;  98 14440-14445
  • 56 Bodine SC et al.. Identification of ubiquitin ligases required for skeletal muscle atrophy.  Science. 2001;  294 1704-1708
  • 57 Cohen S et al.. During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation.  The Journal of Cell Biology. 2009;  185 1083-1095
  • 58 Li Y et al.. TNF-alpha acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle.  The FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology. 2005;  19 362-370
  • 59 Adams V et al.. Induction of MuRF1 is essential for TNF-alpha-induced loss of muscle function in mice.  Journal of Molecular Biology. 2008;  384 48-59
  • 60 Sacheck JM et al.. IGF-I stimulates muscle growth by suppressing protein breakdown and expression of atrophy-related ubiquitin ligases, atrogin-1 and MuRF1.  American Journal of Physiology. 2004;  287 591-601
  • 61 Stitt TN et al.. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors.  Molecular Cell. 2004;  14 395-403
  • 62 Callahan LA, Supinski GS. Sepsis-induced myopathy.  Critical Care Medicine. 2009;  37 354-367
  • 63 de Jonghe B et al.. Intensive care unit-acquired weakness: risk factors and prevention.  Critical Care Medicine. 2009;  37 309-315

Dr. Jeffrey Bierbrauer
Dr. Steffen Weber-Carstens

Email: Jeffrey.Bierbrauer@charite.de

Email: Steffen.Weber-Carstens@charite.de