Semin Thromb Hemost 2011; 37(4): 408-424
DOI: 10.1055/s-0031-1276590
© Thieme Medical Publishers

Vitronectin in Vascular Context: Facets of a Multitalented Matricellular Protein

Klaus T. Preissner1 , Ute Reuning2
  • 1Department of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
  • 2Clinical Research Unit, Department of Obstetrics & Gynecology, Technische Universität München, München, Germany
Further Information

Publication History

Publication Date:
30 July 2011 (online)

ABSTRACT

Vitronectin is an abundant adhesive glycoprotein in blood plasma and is found associated with different extracellular matrix sites, the vessel wall, and tumor cells, particularly upon tissue remodeling, injury/repair, or under disease conditions. Plasma vitronectin is a structurally labile molecule that may be converted into a multimeric/multivalent form by interaction with various (hemostatic) factors or through surface binding. Several distinct binding domains along the vitronectin sequence for integrin-type cell adhesion receptors, for urokinase receptor or proteoglycans as well as for growth factors, endow vascular matrix- or fibrin-associated vitronectin with differentiated cell attachment and aggregatory properties. These were found to be relevant for modulation of the cell–matrix interface in angiogenesis, hemostasis and thrombus formation, or wound repair, respectively. Other vitronectin ligands include plasminogen activator inhibitor (PAI)-1 or high molecular weight kininogen that confer strong antiadhesive functions upon integrin- or urokinase receptor-mediated cell interactions with vitronectin. Together, vitronectin acts as a potent matricellular factor, coordinating cell migration with pericellular proteolysis and growth factor signaling at sites of tissue remodeling or in tumors. Structure-function studies of such vitronectin-related ligands and receptors lead to the characterization of their mode of action, also stimulating the search for new antagonists in tumor angiogenesis, platelet aggregation, or atherosclerosis. This review focuses on new developments in vitronectin biology, with particular emphasis on regulatory mechanisms of the protein in the context of cell adhesion/migration/proliferation and cell-dependent proteolysis, relevant for our understanding of hemostasis, thrombosis, tissue repair, and vascular diseases.

REFERENCES

  • 1 Tomasini B R, Mosher D F. Vitronectin.  Prog Hemost Thromb. 1991;  10 269-305
  • 2 Preissner K T. Structure and biological role of vitronectin.  Annu Rev Cell Biol. 1991;  7 275-310
  • 3 Preissner K T, Seiffert D. Role of vitronectin and its receptors in haemostasis and vascular remodeling.  Thromb Res. 1998;  89 (1) 1-21
  • 4 Kyriakides T R, Bornstein P. Matricellular proteins as modulators of wound healing and the foreign body response.  Thromb Haemost. 2003;  90 (6) 986-992
  • 5 Chapman H A. Plasminogen activators, integrins, and the coordinated regulation of cell adhesion and migration.  Curr Opin Cell Biol. 1997;  9 (5) 714-724
  • 6 Preissner K T, May A E, Wohn K D, Germer M, Kanse S M. Molecular crosstalk between adhesion receptors and proteolytic cascades in vascular remodelling.  Thromb Haemost. 1997;  78 (1) 88-95
  • 7 Stockmann A, Hess S, Declerck P, Timpl R, Preissner K T. Multimeric vitronectin. Identification and characterization of conformation-dependent self-association of the adhesive protein.  J Biol Chem. 1993;  268 (30) 22874-22882
  • 8 Zheng X, Saunders T L, Camper S A, Samuelson L C, Ginsburg D. Vitronectin is not essential for normal mammalian development and fertility.  Proc Natl Acad Sci U S A. 1995;  92 (26) 12426-12430
  • 9 Izumi M, Yamada K M, Hayashi M. Vitronectin exists in two structurally and functionally distinct forms in human plasma.  Biochim Biophys Acta. 1989;  990 (2) 101-108
  • 10 Preissner K T, Holzhüter S, Justus C, Müller-Berghaus G. Identification of and partial characterization of platelet vitronectin: evidence for complex formation with platelet-derived plasminogen activator inhibitor-1.  Blood. 1989;  74 (6) 1989-1996
  • 11 Seiffert D, Schleef R R. Two functionally distinct pools of vitronectin (Vn) in the blood circulation: identification of a heparin-binding competent population of Vn within platelet alpha-granules.  Blood. 1996;  88 (2) 552-560
  • 12 Minor K H, Peterson C B. Plasminogen activator inhibitor type 1 promotes the self-association of vitronectin into complexes exhibiting altered incorporation into the extracellular matrix.  J Biol Chem. 2002;  277 (12) 10337-10345
  • 13 Schvartz I, Seger D, Shaltiel S. Vitronectin.  Int J Biochem Cell Biol. 1999;  31 (5) 539-544
  • 14 van Aken B E, Seiffert D, Thinnes T, Loskutoff D J. Localization of vitronectin in the normal and atherosclerotic human vessel wall.  Histochem Cell Biol. 1997;  107 (4) 313-320
  • 15 Niculescu F, Rus H G, Poruţiu D, Ghiurca V, Vlaicu R. Immunoelectron-microscopic localization of S-protein/vitronectin in human atherosclerotic wall.  Atherosclerosis. 1989;  78 (2–3) 197-203
  • 16 Panetti T S, Wilcox S A, Horzempa C, McKeown-Longo P J. αVβ5 integrin receptor-mediated endocytosis of vitronectin is protein kinase C-dependent.  J Biol Chem. 1995;  270 (31) 18593-18597
  • 17 Huang J S, Lin C M, Cheng Y C et al.. A vitronectin M381T polymorphism increases risk of hemangioblastoma in patients with VHL gene defect.  J Mol Med. 2009;  87 (6) 613-622
  • 18 Izumi M, Shimo-Oka T, Morishita N, Ii I, Hayashi M. Identification of the collagen-binding domain of vitronectin using monoclonal antibodies.  Cell Struct Funct. 1988;  13 (3) 217-225
  • 19 Seiffert D, Loskutoff D J. Evidence that type 1 plasminogen activator inhibitor binds to the somatomedin B domain of vitronectin.  J Biol Chem. 1991;  266 (5) 2824-2830
  • 20 Deng G, Royle G, Wang S, Crain K, Loskutoff D J. Structural and functional analysis of the plasminogen activator inhibitor-1 binding motif in the somatomedin B domain of vitronectin.  J Biol Chem. 1996;  271 (22) 12716-12723
  • 21 Zhou A, Huntington J A, Pannu N S, Carrell R W, Read R J. How vitronectin binds PAI-1 to modulate fibrinolysis and cell migration.  Nat Struct Biol. 2003;  10 (7) 541-544
  • 22 Lynn G W, Heller W T, Mayasundari A, Minor K H, Peterson C B. A model for the three-dimensional structure of human plasma vitronectin from small-angle scattering measurements.  Biochemistry. 2005;  44 (2) 565-574
  • 23 Chavakis T, Kanse S M, Lupu F et al.. Different mechanisms define the antiadhesive function of high molecular weight kininogen in integrin- and urokinase receptor-dependent interactions.  Blood. 2000;  96 (2) 514-522
  • 24 Streuli C H, Akhtar N. Signal co-operation between integrins and other receptor systems.  Biochem J. 2009;  418 (3) 491-506
  • 25 Ständker L, Enger A, Schulz-Knappe P et al.. Structural and functional characterization of vitronectin-derived RGD-containing peptides from human hemofiltrate.  Eur J Biochem. 1996;  241 (2) 557-563
  • 26 Jenne D, Hille A, Stanley K K, Huttner W B. Sulfation of two tyrosine-residues in human complement S-protein (vitronectin).  Eur J Biochem. 1989;  185 (2) 391-395
  • 27 Liang O D, Preissner K T, Chhatwal G S. The hemopexin-type repeats of human vitronectin are recognized by Streptococcus pyogenes .  Biochem Biophys Res Commun. 1997;  234 (2) 445-449
  • 28 Preissner K T, Müller-Berghaus G. Neutralization and binding of heparin by S protein/vitronectin in the inhibition of factor Xa by antithrombin III. Involvement of an inducible heparin-binding domain of S protein/vitronectin.  J Biol Chem. 1987;  262 (25) 12247-12253
  • 29 Schvartz I, Kreizman T, Brumfeld V, Gechtman Z, Seger D, Shaltiel S. The PKA phosphorylation of vitronectin: effect on conformation and function.  Arch Biochem Biophys. 2002;  397 (2) 246-252
  • 30 de Boer H C, Preissner K T, Bouma B N, de Groot P G. Binding of vitronectin-thrombin-antithrombin III complex to human endothelial cells is mediated by the heparin binding site of vitronectin.  J Biol Chem. 1992;  267 (4) 2264-2268
  • 31 Zhuang P, Li H, Williams J G, Wagner N V, Seiffert D, Peterson C B. Characterization of the denaturation and renaturation of human plasma vitronectin. II. Investigation into the mechanism of formation of multimers.  J Biol Chem. 1996;  271 (24) 14333-14343
  • 32 Smith H W, Marshall C J. Regulation of cell signalling by uPAR.  Nat Rev Mol Cell Biol. 2010;  11 (1) 23-36
  • 33 Arnaout M A, Goodman S L, Xiong J P. Structure and mechanics of integrin-based cell adhesion.  Curr Opin Cell Biol. 2007;  19 (5) 495-507
  • 34 Maile L A, Aday A W, Busby W H, Sanghani R, Veluvolu U, Clemmons D R. Modulation of integrin antagonist signaling by ligand binding of the heparin-binding domain of vitronectin to the αVβ3 integrin.  J Cell Biochem. 2008;  105 (2) 437-446
  • 35 Kanse S M, Matz R L, Preissner K T, Peter K. Promotion of leukocyte adhesion by a novel interaction between vitronectin and the beta2 integrin Mac-1 (alphaMbeta2, CD11b/CD18).  Arterioscler Thromb Vasc Biol. 2004;  24 (12) 2251-2256
  • 36 Blasi F, Sidenius N. The urokinase receptor: focused cell surface proteolysis, cell adhesion and signaling.  FEBS Lett. 2010;  584 (9) 1923-1930
  • 37 Preissner K T, Kanse S M, May A E. Urokinase receptor: a molecular organizer in cellular communication.  Curr Opin Cell Biol. 2000;  12 (5) 621-628
  • 38 Wei Y, Lukashev M, Simon D I et al.. Regulation of integrin function by the urokinase receptor.  Science. 1996;  273 (5281) 1551-1555
  • 39 Chapman H A, Wei Y. Protease crosstalk with integrins: the urokinase receptor paradigm.  Thromb Haemost. 2001;  86 (1) 124-129
  • 40 Binder B R, Mihaly J, Prager G W. uPAR-uPA-PAI-1 interactions and signaling: a vascular biologist's view.  Thromb Haemost. 2007;  97 (3) 336-342
  • 41 Nykjaer A, Conese M, Christensen E I et al.. Recycling of the urokinase receptor upon internalization of the uPA:serpin complexes.  EMBO J. 1997;  16 (10) 2610-2620
  • 42 Stefansson S, Lawrence D A, Argraves W S. Plasminogen activator inhibitor-1 and vitronectin promote the cellular clearance of thrombin by low density lipoprotein receptor-related proteins 1 and 2.  J Biol Chem. 1996;  271 (14) 8215-8220
  • 43 Kanse S M, Kost C, Wilhelm O G, Andreasen P A, Preissner K T. The urokinase receptor is a major vitronectin-binding protein on endothelial cells.  Exp Cell Res. 1996;  224 (2) 344-353
  • 44 Colman R W, Pixley R A, Najamunnisa S et al.. Binding of high molecular weight kininogen to human endothelial cells is mediated via a site within domains 2 and 3 of the urokinase receptor.  J Clin Invest. 1997;  100 (6) 1481-1487
  • 45 Wei Y, Waltz D A, Rao N, Drummond R J, Rosenberg S, Chapman H A. Identification of the urokinase receptor as an adhesion receptor for vitronectin.  J Biol Chem. 1994;  269 (51) 32380-32388
  • 46 Madsen C D, Sidenius N. The interaction between urokinase receptor and vitronectin in cell adhesion and signalling.  Eur J Cell Biol. 2008;  87 (8-9) 617-629
  • 47 Czekay R P, Loskutoff D J. Plasminogen activator inhibitors regulate cell adhesion through a uPAR-dependent mechanism.  J Cell Physiol. 2009;  220 (3) 655-663
  • 48 Deng G, Curriden S A, Wang S, Rosenberg S, Loskutoff D J. Is plasminogen activator inhibitor-1 the molecular switch that governs urokinase receptor-mediated cell adhesion and release?.  J Cell Biol. 1996;  134 (6) 1563-1571
  • 49 Asakura S, Hurley R W, Skorstengaard K, Ohkubo I, Mosher D F. Inhibition of cell adhesion by high molecular weight kininogen.  J Cell Biol. 1992;  116 (2) 465-476
  • 50 Chavakis T, Preissner K T. Potential pharmacological applications of the antithrombotic molecule high molecular weight kininogen.  Curr Vasc Pharmacol. 2003;  1 (1) 59-64
  • 51 Kugler M C, Wei Y, Chapman H A. Urokinase receptor and integrin interactions.  Curr Pharm Des. 2003;  9 (19) 1565-1574
  • 52 Madsen C D, Ferraris G M, Andolfo A, Cunningham O, Sidenius N. uPAR-induced cell adhesion and migration: vitronectin provides the key.  J Cell Biol. 2007;  177 (5) 927-939
  • 53 Chavakis T, Kanse S M, May A E, Preissner K T. Haemostatic factors occupy new territory: the role of the urokinase receptor system and kininogen in inflammation.  Biochem Soc Trans. 2002;  30 (2) 168-173
  • 54 Zanetti A, Conforti G, Hess S et al.. Clustering of vitronectin and RGD peptides on microspheres leads to engagement of integrins on the luminal aspect of endothelial cell membrane.  Blood. 1994;  84 (4) 1116-1123
  • 55 Petzinger J, Saltel F, Hersemeyer K et al.. Urokinase receptor (CD87) clustering in detergent-insoluble adhesion patches leads to cell adhesion independently of integrins.  Cell Commun Adhes. 2007;  14 (4) 137-155
  • 56 Llinas P, Le Du M H, Gårdsvoll H et al.. Crystal structure of the human urokinase plasminogen activator receptor bound to an antagonist peptide.  EMBO J. 2005;  24 (9) 1655-1663
  • 57 Huai Q, Mazar A P, Kuo A et al.. Structure of human urokinase plasminogen activator in complex with its receptor.  Science. 2006;  311 (5761) 656-659
  • 58 Moser T L, Enghild J J, Pizzo S V, Stack M S. Specific binding of urinary-type plasminogen activator (u-PA) to vitronectin and its role in mediating u-PA-dependent adhesion of U937 cells.  Biochem J. 1995;  307 (Pt 3) 867-873
  • 59 Higazi AA-R, Upson R H, Cohen R L et al.. Interaction of single-chain urokinase with its receptor induces the appearance and disappearance of binding epitopes within the resultant complex for other cell surface proteins.  Blood. 1996;  88 (2) 542-551
  • 60 Chavakis T, Kanse S M, Yutzy B, Lijnen H R, Preissner K T. Vitronectin concentrates proteolytic activity on the cell surface and extracellular matrix by trapping soluble urokinase receptor-urokinase complexes.  Blood. 1998;  91 1-9
  • 61 Carriero M V, Del Vecchio S, Franco P et al.. Vitronectin binding to urokinase receptor in human breast cancer.  Clin Cancer Res. 1997;  3 (8) 1299-1308
  • 62 Lupu F, Heim D A, Bachmann F, Hurni M, Kakkar V V, Kruithof E KO. Plasminogen activator expression in human atherosclerotic lesions.  Arterioscler Thromb Vasc Biol. 1995;  15 (9) 1444-1455
  • 63 Thiagarajan P, Kelly K L. Exposure of binding sites for vitronectin on platelets following stimulation.  J Biol Chem. 1988;  263 (6) 3035-3038
  • 64 Asch E, Podack E. Vitronectin binds to activated human platelets and plays a role in platelet aggregation.  J Clin Invest. 1990;  85 (5) 1372-1378
  • 65 Taylor D B, Gartner T K. A peptide corresponding to GPIIb alpha 300-312, a presumptive fibrinogen gamma-chain binding site on the platelet integrin GPIIb/IIIa, inhibits the adhesion of platelets to at least four adhesive ligands.  J Biol Chem. 1992;  267 (17) 11729-11733
  • 66 Morgenstern E, Gnad U, Preissner K T et al.. Localization of protein kinase A and vitronectin in resting platelets and their translocation onto fibrin fibers during clot formation.  Eur J Cell Biol. 2001;  80 (1) 87-98
  • 67 Podor T J, Campbell S, Chindemi P et al.. Incorporation of vitronectin into fibrin clots. Evidence for a binding interaction between vitronectin and gamma A/gamma' fibrinogen.  J Biol Chem. 2002;  277 (9) 7520-7528
  • 68 Podor T J, Peterson C B, Lawrence D A et al.. Type 1 plasminogen activator inhibitor binds to fibrin via vitronectin.  J Biol Chem. 2000;  275 (26) 19788-19794
  • 69 Mohri H, Ohkubo T. How vitronectin binds to activated glycoprotein IIb-IIIa complex and its function in platelet aggregation.  Am J Clin Pathol. 1991;  96 (5) 605-609
  • 70 Fay W P, Parker A C, Ansari M N, Zheng X, Ginsburg D. Vitronectin inhibits the thrombotic response to arterial injury in mice.  Blood. 1999;  93 (6) 1825-1830
  • 71 Chavakis T, Boeckel N, Santoso S et al.. Inhibition of platelet adhesion and aggregation by a defined region (Gly-486-Lys-502) of high molecular weight kininogen.  J Biol Chem. 2002;  277 (26) 23157-23164
  • 72 Reheman A, Gross P, Yang H et al.. Vitronectin stabilizes thrombi and vessel occlusion but plays a dual role in platelet aggregation.  J Thromb Haemost. 2005;  3 (5) 875-883
  • 73 Chavakis T, Pixley R A, Isordia-Salas I, Colman R W, Preissner K T. A novel antithrombotic role for high molecular weight kininogen as inhibitor of plasminogen activator inhibitor-1 function.  J Biol Chem. 2002;  277 (36) 32677-32682
  • 74 Wu Y P, Bloemendal H J, Voest E E et al.. Fibrin-incorporated vitronectin is involved in platelet adhesion and thrombus formation through homotypic interactions with platelet-associated vitronectin.  Blood. 2004;  104 (4) 1034-1041
  • 75 Chavakis T, Kanse S M, Pixley R A et al.. Regulation of leukocyte recruitment by polypeptides derived from high molecular weight kininogen.  FASEB J. 2001;  15 (13) 2365-2376
  • 76 Al-Fakhri N, Chavakis T, Schmidt-Wöll T et al.. Induction of apoptosis in vascular cells by plasminogen activator inhibitor-1 and high molecular weight kininogen correlates with their anti-adhesive properties.  Biol Chem. 2003;  384 (3) 423-435
  • 77 Colman R W, White J V, Scovell S, Stadnicki A, Sartor R B. Kininogens are antithrombotic proteins In vivo.  Arterioscler Thromb Vasc Biol. 1999;  19 (9) 2245-2250
  • 78 Eitzman D T, Westrick R J, Nabel E G, Ginsburg D. Plasminogen activator inhibitor-1 and vitronectin promote vascular thrombosis in mice.  Blood. 2000;  95 (2) 577-580
  • 79 Konstantinides S, Schäfer K, Thinnes T, Loskutoff D J. Plasminogen activator inhibitor-1 and its cofactor vitronectin stabilize arterial thrombi after vascular injury in mice.  Circulation. 2001;  103 (4) 576-583
  • 80 Gils A, Declerck P J. The structural basis for the pathophysiological relevance of PAI-I in cardiovascular diseases and the development of potential PAI-I inhibitors.  Thromb Haemost. 2004;  91 (3) 425-437
  • 81 Dupont D M, Madsen J B, Kristensen T et al.. Biochemical properties of plasminogen activator inhibitor-1.  Front Biosci. 2009;  14 1337-1361
  • 82 Declerck P J, De Mol M, Alessi M C et al.. Purification and characterization of a plasminogen activator inhibitor 1 binding protein from human plasma. Identification as a multimeric form of S protein (vitronectin).  J Biol Chem. 1988;  263 (30) 15454-15461
  • 83 Wiman B, Almquist A, Sigurdardottir O, Lindahl T. Plasminogen activator inhibitor 1 (PAI) is bound to vitronectin in plasma.  FEBS Lett. 1988;  242 (1) 125-128
  • 84 Blouse G E, Dupont D M, Schar C R et al.. Interactions of plasminogen activator inhibitor-1 with vitronectin involve an extensive binding surface and induce mutual conformational rearrangements.  Biochemistry. 2009;  48 (8) 1723-1735
  • 85 Stoop A A, Lupu F, Pannekoek H. Colocalization of thrombin, PAI-1, and vitronectin in the atherosclerotic vessel wall: A potential regulatory mechanism of thrombin activity by PAI-1/vitronectin complexes.  Arterioscler Thromb Vasc Biol. 2000;  20 (4) 1143-1149
  • 86 Stringer H AR, van Swieten P, Heijnen H FG, Sixma J J, Pannekoek H. Plasminogen activator inhibitor-1 released from activated platelets plays a key role in thrombolysis resistance. Studies with thrombi generated in the Chandler loop.  Arterioscler Thromb. 1994;  14 (9) 1452-1458
  • 87 Konstantinides S, Schäfer K, Loskutoff D J. Do PAI-1 and vitronectin promote or inhibit neointima formation? The exact role of the fibrinolytic system in vascular remodeling remains uncertain.  Arterioscler Thromb Vasc Biol. 2002;  22 (12) 1943-1945
  • 88 Naski M C, Lawrence D A, Mosher D F, Podor T J, Ginsburg D. Kinetics of inactivation of alpha-thrombin by plasminogen activator inhibitor-1. Comparison of the effects of native and urea-treated forms of vitronectin.  J Biol Chem. 1993;  268 (17) 12367-12372
  • 89 Schar C R, Jensen J K, Christensen A, Blouse G E, Andreasen P A, Peterson C B. Characterization of a site on PAI-1 that binds to vitronectin outside of the somatomedin B domain.  J Biol Chem. 2008;  283 (42) 28487-28496
  • 90 Podor T J, Shaughnessy S G, Blackburn M N, Peterson C B. New insights into the size and stoichiometry of the plasminogen activator inhibitor type-1.vitronectin complex.  J Biol Chem. 2000;  275 (33) 25402-25410
  • 91 Ehrlich H J, Gebbink R K, Keijer J, Linders M, Preissner K T, Pannekoek H. Alteration of serpin specificity by a protein cofactor. Vitronectin endows plasminogen activator inhibitor 1 with thrombin inhibitory properties.  J Biol Chem. 1990;  265 (22) 13029-13035
  • 92 Ehrlich H J, Keijer J, Preissner K T, Gebbink R K, Pannekoek H. Functional interaction of plasminogen activator inhibitor type 1 (PAI-1) and heparin.  Biochemistry. 1991;  30 (4) 1021-1028
  • 93 Rezaie A R. Vitronectin functions as a cofactor for rapid inhibition of activated protein C by plasminogen activator inhibitor-1. Implications for the mechanism of profibrinolytic action of activated protein C.  J Biol Chem. 2001;  276 (19) 15567-15570
  • 94 Wygrecka M, Morty R E, Markart P et al.. Plasminogen activator inhibitor-1 is an inhibitor of factor VII-activating protease in patients with acute respiratory distress syndrome.  J Biol Chem. 2007;  282 (30) 21671-21682
  • 95 Kanse S M, Parahuleva M, Muhl L, Kemkes-Matthes B, Sedding D, Preissner K T. Factor VII-activating protease (FSAP): vascular functions and role in atherosclerosis.  Thromb Haemost. 2008;  99 (2) 286-289
  • 96 Wygrecka M, Jablonska E, Guenther A, Preissner K T, Markart P. Current view on alveolar coagulation and fibrinolysis in acute inflammatory and chronic interstitial lung diseases.  Thromb Haemost. 2008;  99 (3) 494-501
  • 97 Kannemeier C, Shibamiya A, Nakazawa F et al.. Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation.  Proc Natl Acad Sci U S A. 2007;  104 (15) 6388-6393
  • 98 Stefansson S, Lawrence D A. The serpin PAI-1 inhibits cell migration by blocking integrin αVβ3 binding to vitronectin.  Nature. 1996;  383 (6599) 441-443
  • 99 Kjøller L, Kanse S M, Kirkegaard T et al.. Plasminogen activator inhibitor-1 represses integrin- and vitronectin-mediated cell migration independently of its function as an inhibitor of plasminogen activation.  Exp Cell Res. 1997;  232 (2) 420-429
  • 100 Schmitt M, Jänicke F, Graeff H. Tumour-associated fibrinolysis: the prognostic relevance of plasminogen activators uPA and tPA in human breast cancer.  Blood Coagul Fibrinolysis. 1990;  1 (6) 695-702
  • 101 Andreasen P A, Egelund R, Petersen H H. The plasminogen activation system in tumor growth, invasion, and metastasis.  Cell Mol Life Sci. 2000;  57 (1) 25-40
  • 102 Carmeliet P, Collen D. Molecular genetics of the fibrinolytic and coagulation systems in haemostasis, thrombogenesis, restenosis and atherosclerosis.  Curr Opin Lipidol. 1997;  8 (2) 118-125
  • 103 Kamikubo Y, Neels J G, Degryse B. Vitronectin inhibits plasminogen activator inhibitor-1-induced signalling and chemotaxis by blocking plasminogen activator inhibitor-1 binding to the low-density lipoprotein receptor-related protein.  Int J Biochem Cell Biol. 2009;  41 (3) 578-585
  • 104 Radtke K P, Wenz K H, Heimburger N. Isolation of plasminogen activator inhibitor-2 (PAI-2) from human placenta. Evidence for vitronectin/PAI-2 complexes in human placenta extract.  Biol Chem Hoppe Seyler. 1990;  371 (12) 1119-1127
  • 105 Rovelli G, Stone S R, Preissner K T, Monard D. Specific interaction of vitronectin with the cell-secreted protease inhibitor glia-derived nexin and its thrombin complex.  Eur J Biochem. 1990;  192 (3) 797-803
  • 106 Kanse S M, Chavakis T, Al-Fakhri N, Hersemeyer K, Monard D, Preissner K T. Reciprocal regulation of urokinase receptor (CD87)-mediated cell adhesion by plasminogen activator inhibitor-1 and protease nexin-1.  J Cell Sci. 2004;  117 (Pt 3) 477-485
  • 107 Preissner K T. Specific binding of plasminogen to vitronectin. Evidence for a modulatory role of vitronectin on fibrin(ogen)-induced plasmin formation by tissue plasminogen activator.  Biochem Biophys Res Commun. 1990;  168 (3) 966-971
  • 108 Huntington J A. Mechanisms of glycosaminoglycan activation of the serpins in hemostasis.  J Thromb Haemost. 2003;  1 (7) 1535-1549
  • 109 Lane D A, Flynn A M, Pejler G, Lindahl U, Choay J, Preissner K. Structural requirements for the neutralization of heparin-like saccharides by complement S protein/vitronectin.  J Biol Chem. 1987;  262 (34) 16343-16348
  • 110 Thachil J. The prothrombotic potential of platelet factor 4.  Eur J Intern Med. 2010;  21 (2) 79-83
  • 111 Preissner K T, de Boer H, Pannekoek H, de Groot P G. Thrombin regulation by physiological inhibitors: the role of vitronectin.  Semin Thromb Hemost. 1996;  22 (2) 165-172
  • 112 Völker W, Hess S, Vischer P, Preissner K T. Binding and processing of multimeric vitronectin by vascular endothelial cells.  J Histochem Cytochem. 1993;  41 (12) 1823-1832
  • 113 Bar-Shavit R, Benezra M, Eldor A et al.. Thrombin immobilized to extracellular matrix is a potent mitogen for vascular smooth muscle cells: nonenzymatic mode of action.  Cell Regul. 1990;  1 (6) 453-463
  • 114 Høgåsen K, Mollnes T E, Harboe M. Heparin-binding properties of vitronectin are linked to complex formation as illustrated by in vitro polymerization and binding to the terminal complement complex.  J Biol Chem. 1992;  267 (32) 23076-23082
  • 115 Upton Z, Webb H, Hale K et al.. Identification of vitronectin as a novel insulin-like growth factor-II binding protein.  Endocrinology. 1999;  140 (6) 2928-2931
  • 116 Kricker J A, Towne C L, Firth S M, Herington A C, Upton Z. Structural and functional evidence for the interaction of insulin-like growth factors (IGFs) and IGF binding proteins with vitronectin.  Endocrinology. 2003;  144 (7) 2807-2815
  • 117 Upton Z, Cuttle L, Noble A et al.. Vitronectin: growth factor complexes hold potential as a wound therapy approach.  J Invest Dermatol. 2008;  128 (6) 1535-1544
  • 118 Maile L A, Badley-Clarke J, Clemmons D R. Structural analysis of the role of the β 3 subunit of the αVβ3 integrin in IGF-I signaling.  J Cell Sci. 2001;  114 (Pt 7) 1417-1425
  • 119 Maile L A, Busby W H, Sitko K et al.. The heparin binding domain of vitronectin is the region that is required to enhance insulin-like growth factor-I signaling.  Mol Endocrinol. 2006;  20 (4) 881-892
  • 120 Schoppet M, Chavakis T, Al-Fakhri N, Kanse S M, Preissner K T. Molecular interactions and functional interference between vitronectin and transforming growth factor-β.  Lab Invest. 2002;  82 (1) 37-46
  • 121 Kricker J A, Hyde C E, Van Lonkhuyzen D R et al.. Mechanistic investigations into interactions between IGF-I and IGFBPs and their impact on facilitating cell migration on vitronectin.  Growth Factors. 2010;  28 (5) 359-369
  • 122 Seiffert D, Geisterfer M, Gauldie J, Young E, Podor T J. IL-6 stimulates vitronectin gene expression in vivo.  J Immunol. 1995;  155 (6) 3180-3185
  • 123 Seiffert D. Constitutive and regulated expression of vitronectin.  Histol Histopathol. 1997;  12 (3) 787-797
  • 124 Carpagnano G E, Kharitonov S A, Wells A U, Pantelidis P, Du Bois R M, Barnes P J. Increased vitronectin and endothelin-1 in the breath condensate of patients with fibrosing lung disease.  Respiration. 2003;  70 (2) 154-160
  • 125 Lazar M H, Christensen P J, Du M et al.. Plasminogen activator inhibitor-1 impairs alveolar epithelial repair by binding to vitronectin.  Am J Respir Cell Mol Biol. 2004;  31 (6) 672-678
  • 126 Adair J E, Stober V, Sobhany M et al.. Inter-α-trypsin inhibitor promotes bronchial epithelial repair after injury through vitronectin binding.  J Biol Chem. 2009;  284 (25) 16922-16930
  • 127 Hammes H P, Weiss A, Hess S et al.. Modification of vitronectin by advanced glycation alters functional properties in vitro and in the diabetic retina.  Lab Invest. 1996;  75 (3) 325-338
  • 128 Preissner K T, Pötzsch B. Vessel wall-dependent metabolic pathways of the adhesive proteins, von-Willebrand-factor and vitronectin.  Histol Histopathol. 1995;  10 (1) 239-251
  • 129 Dahlbäck K, Löfberg H, Alumets J, Dahlbäck B. Immunohistochemical demonstration of age-related deposition of vitronectin (S-protein of complement) and terminal complement complex on dermal elastic fibers.  J Invest Dermatol. 1989;  92 (5) 727-733
  • 130 Liu Z, Han Q, Zhang L, Zhao Q, Chen J, Lou S. Low levels of serum vitronectin associated with clinical phases in patients with hemorrhagic fever with renal syndrome.  Clin Exp Med. 2009;  9 (4) 297-301
  • 131 Plow E F. Vitronectin: back into the spotlight.  J Thromb Haemost. 2005;  3 (5) 873-874
  • 132 Marciniak Jr S J, Mascelli M A, Furman M I et al.. An additional mechanism of action of abciximab: dispersal of newly formed platelet aggregates.  Thromb Haemost. 2002;  87 (6) 1020-1025
  • 133 Ross R. Atherosclerosis—an inflammatory disease.  N Engl J Med. 1999;  340 (2) 115-126
  • 134 Pyle A L, Young P P. Atheromas feel the pressure: biomechanical stress and atherosclerosis.  Am J Pathol. 2010;  177 (1) 4-9
  • 135 Schneiderman J, Sawdey M S, Keeton M R et al.. Increased type 1 plasminogen activator inhibitor gene expression in atherosclerotic human arteries.  Proc Natl Acad Sci U S A. 1992;  89 (15) 6998-7002
  • 136 Liaw L, Skinner M P, Raines E W et al.. The adhesive and migratory effects of osteopontin are mediated via distinct cell surface integrins. Role of αVβ3 in smooth muscle cell migration to osteopontin in vitro.  J Clin Invest. 1995;  95 (2) 713-724
  • 137 Dufourcq P, Louis H, Moreau C et al.. Vitronectin expression and interaction with receptors in smooth muscle cells from human atheromatous plaque.  Arterioscler Thromb Vasc Biol. 1998;  18 (2) 168-176
  • 138 Rade J J, Schulick A H, Virmani R, Dichek D A. Local adenoviral-mediated expression of recombinant hirudin reduces neointima formation after arterial injury.  Nat Med. 1996;  2 (3) 293-298
  • 139 Brown S L, Lundgren C H, Nordt T, Fujii S. Stimulation of migration of human aortic smooth muscle cells by vitronectin: implications for atherosclerosis.  Cardiovasc Res. 1994;  28 (12) 1815-1820
  • 140 Dufourcq P, Couffinhal T, Alzieu P et al.. Vitronectin is up-regulated after vascular injury and vitronectin blockade prevents neointima formation.  Cardiovasc Res. 2002;  53 (4) 952-962
  • 141 Peng L, Bhatia N, Parker A C, Zhu Y, Fay W P. Endogenous vitronectin and plasminogen activator inhibitor-1 promote neointima formation in murine carotid arteries.  Arterioscler Thromb Vasc Biol. 2002;  22 (6) 934-939
  • 142 De Taeye B, Compernolle G, Declerck P J. Site-directed targeting of plasminogen activator inhibitor-1 as an example for a novel approach in rational drug design.  J Biol Chem. 2004;  279 (19) 20447-20450
  • 143 Heino J. Biology of tumor cell invasion: interplay of cell adhesion and matrix degradation.  Int J Cancer. 1996;  65 (6) 717-722
  • 144 Campbell N E, Kellenberger L, Greenaway J et al.. Extracellular matrix proteins and tumor angiogenesis.  J Oncol. 2010;  586905
  • 145 Barkan D, Green J E, Chambers A F. Extracellular matrix: a gatekeeper in the transition from dormancy to metastatic growth.  Eur J Cancer. 2010;  46 (7) 1181-1188
  • 146 Rüegg C, Alghisi G C. Vascular integrins: therapeutic and imaging targets of tumor angiogenesis.  Recent Results Cancer Res. 2010;  180 83-101
  • 147 Mekkawy A H, Morris D L, Pourgholami M H. Urokinase plasminogen activator system as a potential target for cancer therapy.  Future Oncol. 2009;  5 (9) 1487-1499
  • 148 Hurt E M, Chan K, Serrat M A, Thomas S B, Veenstra T D, Farrar W L. Identification of vitronectin as an extrinsic inducer of cancer stem cell differentiation and tumor formation.  Stem Cells. 2010;  28 (3) 390-398
  • 149 Kellouche S, Fernandes J, Leroy-Dudal J et al.. Initial formation of IGROV1 ovarian cancer multicellular aggregates involves vitronectin.  Tumour Biol. 2010;  31 (2) 129-139
  • 150 Yasumitsu H, Seo N, Misugi E, Morita H, Miyazaki K, Umeda M. Vitronectin secretion by hepatic and non-hepatic human cancer cells.  In Vitro Cell Dev Biol Anim. 1993;  29A (5) 403-407
  • 151 Tomasini-Johansson B R, Sundberg C, Lindmark G, Gailit J O, Rubin K. Vitronectin in colorectal adenocarcinoma—synthesis by stromal cells in culture.  Exp Cell Res. 1994;  214 (1) 303-312
  • 152 Carreiras F, Cruet S, Staedel C, Sichel F, Gauduchon P. Human ovarian adenocarcinoma cells synthesize vitronectin and use It to organize their adhesion.  Gynecol Oncol. 1999;  72 (3) 312-322
  • 153 Carreiras F, Denoux Y, Staedel C, Lehmann M, Sichel F, Gauduchon P. Expression and localization of α v integrins and their ligand vitronectin in normal ovarian epithelium and in ovarian carcinoma.  Gynecol Oncol. 1996;  62 (2) 260-267
  • 154 Ozols R F, Bookman M A, Connolly D C et al.. Focus on epithelial ovarian cancer.  Cancer Cell. 2004;  5 (1) 19-24
  • 155 Leroy-Dudal J, Heyman L, Gauduchon P, Carreiras F. Adhesion of human ovarian adenocarcinoma IGROV1 cells to endothelial cells is partly mediated by the alphav integrins-vitronectin adhesive system and induces an alteration of endothelial integrity.  Cell Biol Int. 2005;  29 (6) 482-488
  • 156 Kenny H A, Kaur S, Coussens L M, Lengyel E. The initial steps of ovarian cancer cell metastasis are mediated by MMP-2 cleavage of vitronectin and fibronectin.  J Clin Invest. 2008;  118 (4) 1367-1379
  • 157 Folkman J. Angiogenesis.  Annu Rev Med. 2006;  57 1-18
  • 158 Desgrosellier J S, Cheresh D A. Integrins in cancer: biological implications and therapeutic opportunities.  Nat Rev Cancer. 2010;  10 (1) 9-22
  • 159 Hynes R O. A reevaluation of integrins as regulators of angiogenesis.  Nat Med. 2002;  8 (9) 918-921
  • 160 Brooks P C, Clark R A, Cheresh D A. Requirement of vascular integrin αVβ3 for angiogenesis.  Science. 1994;  264 (5158) 569-571
  • 161 Bello L, Francolini M, Marthyn P et al.. αVβ3 and αVβ5 integrin expression in glioma periphery.  Neurosurgery. 2001;  49 (2) 380-389 discussion 390
  • 162 Brooks P C, Montgomery A M, Rosenfeld M et al.. Integrin α v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels.  Cell. 1994;  79 (7) 1157-1164
  • 163 Hammes H P, Brownlee M, Jonczyk A, Sutter A, Preissner K T. Subcutaneous injection of a cyclic peptide antagonist of vitronectin receptor-type integrins inhibits retinal neovascularization.  Nat Med. 1996;  2 (5) 529-533
  • 164 Yi M, Sakai T, Fassler R, Ruoslahti E. Antiangiogenic proteins require plasma fibronectin or vitronectin for in vivo activity.  Proc Natl Acad Sci U S A. 2003;  100 (20) 11435-11438
  • 165 Reuning U, Magdolen V, Wilhelm O et al.. Multifunctional potential of the plasminogen activation system in tumor invasion and metastasis.  Int J Oncol. 1998;  13 (5) 893-906
  • 166 Reuning U, Sperl S, Kopitz C et al.. Urokinase-type plasminogen activator (uPA) and its receptor (uPAR): development of antagonists of uPA/uPAR interaction and their effects in vitro and in vivo.  Curr Pharm Des. 2003;  9 (19) 1529-1543
  • 167 Harbeck N, Kates R E, Schmitt M et al.. Urokinase-type plasminogen activator and its inhibitor type 1 predict disease outcome and therapy response in primary breast cancer.  Clin Breast Cancer. 2004;  5 (5) 348-352
  • 168 Bajou K, Noël A, Gerard R D et al.. Absence of host plasminogen activator inhibitor 1 prevents cancer invasion and vascularization.  Nat Med. 1998;  4 (8) 923-928
  • 169 Bajou K, Masson V, Gerard R D et al.. The plasminogen activator inhibitor PAI-1 controls in vivo tumor vascularization by interaction with proteases, not vitronectin. Implications for antiangiogenic strategies.  J Cell Biol. 2001;  152 (4) 777-784
  • 170 Nyberg P, Xie L, Kalluri R. Endogenous inhibitors of angiogenesis.  Cancer Res. 2005;  65 (10) 3967-3979

Klaus T PreissnerPh.D. 

Department of Biochemistry, Medical School, Justus-Liebig-Universität

Friedrichstrasse 24, D-35392 Giessen, Germany

Email: klaus.t.preissner@biochemie.med.uni-giessen.de