Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000032.xml
Klinische Neurophysiologie 2011; 42(4): e1-e12
DOI: 10.1055/s-0031-1276989
DOI: 10.1055/s-0031-1276989
Fort- und Weiterbildung
© Georg Thieme Verlag KG Stuttgart · New York
Innovationen im Neuromonitoring mit Ultraschall
Innovations in Neuromonitoring Using Transcranial UltrasoundFurther Information
Publication History
Publication Date:
30 November 2011 (online)
Lernziele
Kenntnisse über:
Ultraschallverfahren bei allgemeiner intrakranieller Druckerhöhung und zur Erfassung umschriebener Hirndruckänderungen Parenchym-Ultraschall und das Monitoring neurochirurgischer Eingriffe Monitoring mittels transkranieller Doppler-Sonografie
Literatur
- 1 Gosling R G, King D H. Arterial assessment by Doppler-shift ultrasound. Proc R Soc Med. 1974; 67 447-449
- 2 Figaji A A, Zwane E, Fieggen A G et al. Transcranial Doppler pulsatility index is not a reliable indicator of intracranial pressure in children with severe traumatic brain injury. Surg Neurol. 2009; 72 389-394
- 3 Behrens A, Lenfeldt N, Ambarki K et al. Transcranial Doppler pulsatility index: not an accurate method to assess intracranial pressure. Neurosurgery. 2010; 66 1050-1057
- 4 Reinhard M, Petrick M, Steinfurth G et al. Acute increase in intracranial pressure revealed by transcranial Doppler sonography. J Clin Ultrasound. 2003; 31 324-327
- 5 Widder B, Görtler M. Doppler- und Duplex-Sonografie der hirnversorgenden Arterien.. 6. Auflage. Berlin, Heidelberg, New York: Springer-Verlag; 2006
- 6 Schmidt B, Czosnyka M, Raabe A et al. Adaptive noninvasive assessment of intracranial pressure and cerebral autoregulation. Stroke. 2003; 34 84-89
- 7 Schmidt B, Weinhold M, Czosnyka M et al. Accuracy of non-invasive ICP assessment can be increased by an initial individual calibration. Acta Neurochir Suppl. 2008; 102 49-52
- 8 Schaller B, Graf R. Different compartments of intracranial pressure and its relationship to cerebral blood flow. J Trauma. 2005; 59 1521-1531
- 9 Niesen W D, Rosenkranz M, Schummer W et al. Cerebral venous flow velocity predicts poor outcome in subarachnoid hemorrhage. Stroke. 2004; 35 1873-1878
- 10 Schoser B G, Riemenschneider N, Hansen H C. The impact of raised intracranial pressure on cerebral venous hemodynamics: a prospective venous transcranial Doppler ultrasonography study. J Neurosurg. 1999; 91 744-749
- 11 Mursch K, Müller C A, Buhre W et al. Blood flow velocities in the basal cerebral vein after head trauma: a prospective study in 82 patients. J Neuroimaging. 2002; 12 325-329
- 12 Stolz E, Gerriets T, Babacan S S et al. Intracranial venous hemodynamics in patients with midline dislocation due to postischemic brain edema. Stroke. 2002; 33 479-485
- 13 Rohr A, Riedel C, Reimann G et al. Pseudotumor cerebri: quantitative in-vivo measurements of markers of intracranial hypertension. Rofo. 2008; 180 884-890
- 14 Lagrèze W A, Lazzaro A, Weigel M et al. Morphometry of the retrobulbar human optic nerve: comparison between conventional sonography and ultrafast magnetic resonance sequences. Invest Ophthalmol Vis Sci. 2007; 48 1913-1917
- 15 Bäuerle J, Lochner P, Kaps M et al. Intra- and Interobsever Reliability of Sonographic Assessment of the Optic Nerve Sheath Diameter in Healthy Adults. J Neuroimaging. 2010; DOI: DOI: 10.1111/j.1552–6569.2010.00546.x
- 16 Soldatos T, Chatzimichail K, Papathanasiou M et al. Optic nerve sonography: a new window for the non-invasive evaluation of intracranial pressure in brain injury. Emerg Med J. 2009; 26 630-634
- 17 Hansen H C, Helmke K. Validation of the optic nerve sheath response to changing cerebrospinal fluid pressure: ultrasound findings during intrathecal infusion tests. J Neurosurg. 1997; 87 34-40
- 18 Hansen H C, Lagrèze W, Krueger O et al. Dependence of the optic nerve sheath diameter on acutely applied subarachnoidal pressure – an experimental ultrasound study. Acta Ophthalmol. 2011; 89 e528-532
- 19 Bäuerle J, Nedelmann M. Sonographic assessment of the optic nerve sheath in idiopathic intracranial hypertension. J Neurol. 2011; 258 2014-2019
- 20 Gerriets T, Stolz E, Modrau B et al. Sonographic monitoring of midline shift in hemispheric infarctions. Neurology. 1999; 1 45-49
- 21 Gerriets T, Stolz E, König S et al. Sonographic monitoring of midline shift in space-occupying stroke: an early outcome predictor. Stroke. 2001; 32 442-447
- 22 Stolz E, Gerriets T, Fiss I et al. Comparison of transcranial color-coded duplex sonography and cranial CT measurements for determining third ventricle midline shift in space-occupying stroke. AJNR Am J Neuroradiol. 1999; 20 1567-1571
- 23 Bertram M, Khoja W, Ringleb P et al. Transcranial colour-coded sonography for the bedside evaluation of mass effect after stroke. Eur J Neurol. 2000; 7 639-646
- 24 Mäurer M, Shambal S, Berg D et al. Differentiation between intracerebral hemorrhage and ischemic stroke by transcranial color-coded duplex-sonography. Stroke. 1998; 29 2563-2567
- 25 Seidel G, Kaps M, Dorndorf W. Transcranial color-coded duplex sonography of intracerebral hematomas in adults. Stroke. 1993; 24 1519-1527
- 26 Broderick J P, Brott T G, Tomsick T et al. Ultra-early evaluation of intracerebral hemorrhage. J Neurosurg. 1990; 72 195-199
- 27 Pérez E S, Delgado-Mederos R, Rubiera M et al. Transcranial duplex sonography for monitoring hyperacute intracerebral hemorrhage. Stroke. 2009; 40 987-990
- 28 Niesen W D, Burkhardt D, Hoeltje J et al. Transcranial grey-scale sonography of subdural haematoma in adults. Ultraschall Med. 2006; 27 251-255
- 29 Whitehead W E, Jea A, Vachhrajani S et al. Accurate placement of cerebrospinal fluid shunt ventricular catheters with real-time ultrasound guidance in older children without patent fontanelles. J Neurosurg. 2007; 107 406-410
- 30 Niesen W, Grauvogel J, Deininger M et al. Sonographisch gesteuerte Katheteranlage zur minimal-invasiven Entlastung intrazerebraler Hämatome.. Abstraktband der 27. Arbeitstagung der Deutschen GEsellschaft für Neurointensiv- und Notfallmedizin, Bad Homburg; 2010: 49
- 31 Kiphuth I C, Huttner H B, Struffert T et al. Sonographic monitoring of ventricle enlargement in posthemorrhagic hydrocephalus. Neurology. 2011; 76 858-862
- 32 Aaslid R, Lindegaard K F, Sorteberg W et al. Cerebral autoregulation dynamics in humans. Stroke. 1989; 20 45-52
- 33 Czosnyka M, Brady K, Reinhard M et al. Monitoring of cerebrovascular autoregulation: facts, myths, and missing links. Neurocrit Care. 2009; 10 373-386
- 34 Reinhard M, Neunhoeffer F, Gerds T A et al. Secondary decline of cerebral autoregulation is associated with worse outcome after intracerebral hemorrhage. Intensive Care Med. 2010; 36 264-271
- 35 Reinhard M, Rutsch S, Lambeck J et al. Dynamic cerebral autoregulation associates with infarct size and outcome after ischemic stroke. Acta Neurol Scand. 2011; DOI: DOI: 10.1111/j.1600–0404.2011.01515.x
- 36 Reinhard M, Gerds T A, Grabiak D et al. Cerebral dysautoregulation and the risk of ischemic events in occlusive carotid artery disease. J Neurol. 2008; 255 1182-1189
- 37 Daffertshofer M, Huang Z, Fatar M et al. Efficacy of sonothrombolysis in a rat model of embolic ischemic stroke. Neurosci Lett. 2004; 361 115-119
- 38 Alexandrov A V, Molina C A, Grotta J C et al. CLOTBUST Investigators. Ultrasound-enhanced systemic thrombolysis for acute ischemic stroke. N Engl J Med. 2004; 351 2170-2178
- 39 Tsivgoulis G, Eggers J, Ribo M et al. Safety and efficacy of ultrasound-enhanced thrombolysis: a comprehensive review and meta-analysis of randomized and nonrandomized studies. Stroke. 2010; 41 280-287
PD Dr. med. Andreas Harloff
Neurologische Universitätsklinik Freiburg
Breisacher Straße 64
79106 Freiburg
Email: andreas.harloff@uniklinik-freiburg.de