Klinische Neurophysiologie 2011; 42(4): e1-e12
DOI: 10.1055/s-0031-1276989
Fort- und Weiterbildung
© Georg Thieme Verlag KG Stuttgart · New York

Innovationen im Neuromonitoring mit Ultraschall

Innovations in Neuromonitoring Using Transcranial UltrasoundA.  Harloff1 , W.  D.  Niesen1 , M.  Reinhard1
  • 1Neurologische Universitätsklinik Freiburg
Further Information

Publication History

Publication Date:
30 November 2011 (online)

Lernziele

Kenntnisse über:

Ultraschallverfahren bei allgemeiner intrakranieller Druckerhöhung und zur Erfassung umschriebener Hirndruckänderungen Parenchym-Ultraschall und das Monitoring neurochirurgischer Eingriffe Monitoring mittels transkranieller Doppler-Sonografie

Literatur

  • 1 Gosling R G, King D H. Arterial assessment by Doppler-shift ultrasound.  Proc R Soc Med. 1974;  67 447-449
  • 2 Figaji A A, Zwane E, Fieggen A G et al. Transcranial Doppler pulsatility index is not a reliable indicator of intracranial pressure in children with severe traumatic brain injury.  Surg Neurol. 2009;  72 389-394
  • 3 Behrens A, Lenfeldt N, Ambarki K et al. Transcranial Doppler pulsatility index: not an accurate method to assess intracranial pressure.  Neurosurgery. 2010;  66 1050-1057
  • 4 Reinhard M, Petrick M, Steinfurth G et al. Acute increase in intracranial pressure revealed by transcranial Doppler sonography.  J Clin Ultrasound. 2003;  31 324-327
  • 5 Widder B, Görtler M. Doppler- und Duplex-Sonografie der hirnversorgenden Arterien.. 6. Auflage. Berlin, Heidelberg, New York: Springer-Verlag; 2006
  • 6 Schmidt B, Czosnyka M, Raabe A et al. Adaptive noninvasive assessment of intracranial pressure and cerebral autoregulation.  Stroke. 2003;  34 84-89
  • 7 Schmidt B, Weinhold M, Czosnyka M et al. Accuracy of non-invasive ICP assessment can be increased by an initial individual calibration.  Acta Neurochir Suppl. 2008;  102 49-52
  • 8 Schaller B, Graf R. Different compartments of intracranial pressure and its relationship to cerebral blood flow.  J Trauma. 2005;  59 1521-1531
  • 9 Niesen W D, Rosenkranz M, Schummer W et al. Cerebral venous flow velocity predicts poor outcome in subarachnoid hemorrhage.  Stroke. 2004;  35 1873-1878
  • 10 Schoser B G, Riemenschneider N, Hansen H C. The impact of raised intracranial pressure on cerebral venous hemodynamics: a prospective venous transcranial Doppler ultrasonography study.  J Neurosurg. 1999;  91 744-749
  • 11 Mursch K, Müller C A, Buhre W et al. Blood flow velocities in the basal cerebral vein after head trauma: a prospective study in 82 patients.  J Neuroimaging. 2002;  12 325-329
  • 12 Stolz E, Gerriets T, Babacan S S et al. Intracranial venous hemodynamics in patients with midline dislocation due to postischemic brain edema.  Stroke. 2002;  33 479-485
  • 13 Rohr A, Riedel C, Reimann G et al. Pseudotumor cerebri: quantitative in-vivo measurements of markers of intracranial hypertension.  Rofo. 2008;  180 884-890
  • 14 Lagrèze W A, Lazzaro A, Weigel M et al. Morphometry of the retrobulbar human optic nerve: comparison between conventional sonography and ultrafast magnetic resonance sequences.  Invest Ophthalmol Vis Sci. 2007;  48 1913-1917
  • 15 Bäuerle J, Lochner P, Kaps M et al. Intra- and Interobsever Reliability of Sonographic Assessment of the Optic Nerve Sheath Diameter in Healthy Adults.  J Neuroimaging. 2010;  DOI: DOI: 10.1111/j.1552–6569.2010.00546.x
  • 16 Soldatos T, Chatzimichail K, Papathanasiou M et al. Optic nerve sonography: a new window for the non-invasive evaluation of intracranial pressure in brain injury.  Emerg Med J. 2009;  26 630-634
  • 17 Hansen H C, Helmke K. Validation of the optic nerve sheath response to changing cerebrospinal fluid pressure: ultrasound findings during intrathecal infusion tests.  J Neurosurg. 1997;  87 34-40
  • 18 Hansen H C, Lagrèze W, Krueger O et al. Dependence of the optic nerve sheath diameter on acutely applied subarachnoidal pressure – an experimental ultrasound study.  Acta Ophthalmol. 2011;  89 e528-532
  • 19 Bäuerle J, Nedelmann M. Sonographic assessment of the optic nerve sheath in idiopathic intracranial hypertension.  J Neurol. 2011;  258 2014-2019
  • 20 Gerriets T, Stolz E, Modrau B et al. Sonographic monitoring of midline shift in hemispheric infarctions.  Neurology. 1999;  1 45-49
  • 21 Gerriets T, Stolz E, König S et al. Sonographic monitoring of midline shift in space-occupying stroke: an early outcome predictor.  Stroke. 2001;  32 442-447
  • 22 Stolz E, Gerriets T, Fiss I et al. Comparison of transcranial color-coded duplex sonography and cranial CT measurements for determining third ventricle midline shift in space-occupying stroke.  AJNR Am J Neuroradiol. 1999;  20 1567-1571
  • 23 Bertram M, Khoja W, Ringleb P et al. Transcranial colour-coded sonography for the bedside evaluation of mass effect after stroke.  Eur J Neurol. 2000;  7 639-646
  • 24 Mäurer M, Shambal S, Berg D et al. Differentiation between intracerebral hemorrhage and ischemic stroke by transcranial color-coded duplex-sonography.  Stroke. 1998;  29 2563-2567
  • 25 Seidel G, Kaps M, Dorndorf W. Transcranial color-coded duplex sonography of intracerebral hematomas in adults.  Stroke. 1993;  24 1519-1527
  • 26 Broderick J P, Brott T G, Tomsick T et al. Ultra-early evaluation of intracerebral hemorrhage.  J Neurosurg. 1990;  72 195-199
  • 27 Pérez E S, Delgado-Mederos R, Rubiera M et al. Transcranial duplex sonography for monitoring hyperacute intracerebral hemorrhage.  Stroke. 2009;  40 987-990
  • 28 Niesen W D, Burkhardt D, Hoeltje J et al. Transcranial grey-scale sonography of subdural haematoma in adults.  Ultraschall Med. 2006;  27 251-255
  • 29 Whitehead W E, Jea A, Vachhrajani S et al. Accurate placement of cerebrospinal fluid shunt ventricular catheters with real-time ultrasound guidance in older children without patent fontanelles.  J Neurosurg. 2007;  107 406-410
  • 30 Niesen W, Grauvogel J, Deininger M et al. Sonographisch gesteuerte Katheteranlage zur minimal-invasiven Entlastung intrazerebraler Hämatome.. Abstraktband der 27. Arbeitstagung der Deutschen GEsellschaft für Neurointensiv- und Notfallmedizin, Bad Homburg; 2010: 49
  • 31 Kiphuth I C, Huttner H B, Struffert T et al. Sonographic monitoring of ventricle enlargement in posthemorrhagic hydrocephalus.  Neurology. 2011;  76 858-862
  • 32 Aaslid R, Lindegaard K F, Sorteberg W et al. Cerebral autoregulation dynamics in humans.  Stroke. 1989;  20 45-52
  • 33 Czosnyka M, Brady K, Reinhard M et al. Monitoring of cerebrovascular autoregulation: facts, myths, and missing links.  Neurocrit Care. 2009;  10 373-386
  • 34 Reinhard M, Neunhoeffer F, Gerds T A et al. Secondary decline of cerebral autoregulation is associated with worse outcome after intracerebral hemorrhage.  Intensive Care Med. 2010;  36 264-271
  • 35 Reinhard M, Rutsch S, Lambeck J et al. Dynamic cerebral autoregulation associates with infarct size and outcome after ischemic stroke.  Acta Neurol Scand. 2011;  DOI: DOI: 10.1111/j.1600–0404.2011.01515.x
  • 36 Reinhard M, Gerds T A, Grabiak D et al. Cerebral dysautoregulation and the risk of ischemic events in occlusive carotid artery disease.  J Neurol. 2008;  255 1182-1189
  • 37 Daffertshofer M, Huang Z, Fatar M et al. Efficacy of sonothrombolysis in a rat model of embolic ischemic stroke.  Neurosci Lett. 2004;  361 115-119
  • 38 Alexandrov A V, Molina C A, Grotta J C et al. CLOTBUST Investigators. Ultrasound-enhanced systemic thrombolysis for acute ischemic stroke.  N Engl J Med. 2004;  351 2170-2178
  • 39 Tsivgoulis G, Eggers J, Ribo M et al. Safety and efficacy of ultrasound-enhanced thrombolysis: a comprehensive review and meta-analysis of randomized and nonrandomized studies.  Stroke. 2010;  41 280-287

PD Dr. med. Andreas Harloff

Neurologische Universitätsklinik Freiburg

Breisacher Straße 64

79106 Freiburg

Email: andreas.harloff@uniklinik-freiburg.de