Semin Hear 2011; 32(2): 129-141
DOI: 10.1055/s-0031-1277234
© Thieme Medical Publishers

Neural Encoding of Speech and Music: Implications for Hearing Speech in Noise

Samira Anderson1 , 2 , Nina Kraus1–4
  • 1Auditory Neuroscience Laboratory, Evanston, Illinois
  • 2Department of Communication Sciences, Evanston, Illinois
  • 3Department of Neurobiology and Physiology, Evanston, Illinois
  • 4Department of Otolaryngology at Northwestern University, Evanston, Illinois
Further Information

Publication History

Publication Date:
12 August 2011 (online)

ABSTRACT

Understanding speech in a background of competing noise is challenging, especially for individuals with hearing loss or deficits in auditory processing ability. The ability to hear in background noise cannot be predicted from the audiogram, an assessment of peripheral hearing ability; therefore, it is important to consider the impact of central and cognitive factors on speech-in-noise perception. Auditory processing in complex environments is reflected in neural encoding of pitch, timing, and timbre, the crucial elements of speech and music. Musical expertise in processing pitch, timing, and timbre may transfer to enhancements in speech-in-noise perception due to shared neural pathways for speech and music. Through cognitive-sensory interactions, musicians develop skills enabling them to selectively listen to relevant signals embedded in a network of melodies and harmonies, and this experience leads in turn to enhanced ability to focus on one voice in a background of other voices. Here we review recent work examining the biological mechanisms of speech and music perception and the potential for musical experience to ameliorate speech-in-noise listening difficulties.

REFERENCES

  • 1 Bradlow AR, Kraus N, Hayes E. Speaking clearly for children with learning disabilities: sentence perception in noise.  J Speech Lang Hear Res. 2003;  46 (1) 80-97
  • 2 Geffner D, Lucker JR, Koch W. Evaluation of auditory discrimination in children with ADD and without ADD.  Child Psychiatry Hum Dev. 1996;  26 (3) 169-179
  • 3 Lagacé J, Jutras B, Gagné JP. Auditory processing disorder and speech perception problems in noise: finding the underlying origin.  Am J Audiol. 2010;  19 (1) 17-25
  • 4 Moore DR, Ferguson MA, Edmondson-Jones AM, Ratib S, Riley A. Nature of auditory processing disorder in children.  Pediatrics. 2010;  126 (2) e382-e390
  • 5 Alcántara JI, Weisblatt EJ, Moore BC, Bolton PF. Speech-in-noise perception in high-functioning individuals with autism or Asperger's syndrome.  J Child Psychol Psychiatry. 2004;  45 (6) 1107-1114
  • 6 Ziegler JC, Pech-Georgel C, George F, Lorenzi C. Speech-perception-in-noise deficits in dyslexia.  Dev Sci. 2009;  12 (5) 732-745
  • 7 Ziegler JC, Pech-Georgel C, George F, Alario F-X, Lorenzi C. Deficits in speech perception predict language learning impairment.  Proc Natl Acad Sci U S A. 2005;  102 (39) 14110-14115
  • 8 Lewis D, Hoover B, Choi S, Stelmachowicz P. Relationship between speech perception in noise and phonological awareness skills for children with normal hearing.  Ear Hear. 2010;  31 (6) 761-768
  • 9 Cruickshanks KJ, Wiley TL, Tweed TS The Epidemiology of Hearing Loss Study et al. Prevalence of hearing loss in older adults in Beaver Dam, Wisconsin.  Am J Epidemiol. 1998;  148 (9) 879-886
  • 10 Humes LE. Speech understanding in the elderly.  J Am Acad Audiol. 1996;  7 (3) 161-167
  • 11 Souza PE, Boike KT, Witherell K, Tremblay K. Prediction of speech recognition from audibility in older listeners with hearing loss: effects of age, amplification, and background noise.  J Am Acad Audiol. 2007;  18 (1) 54-65
  • 12 Gordon-Salant S. Hearing loss and aging: new research findings and clinical implications.  J Rehabil Res Dev. 2005;  42 (4 Suppl 2) 9-24
  • 13 Dubno JR, Dirks DD, Morgan DE. Effects of age and mild hearing loss on speech recognition in noise.  J Acoust Soc Am. 1984;  76 (1) 87-96
  • 14 Patel A. Music, Language, and the Brain. New York, NY: Oxford University Press, Inc.; 2010
  • 15 Peretz I. The nature of music from a biological perspective.  Cognition. 2006;  100 (1) 1-32
  • 16 Kraus N, Chandrasekaran B. Music training for the development of auditory skills.  Nat Rev Neurosci. 2010;  11 (8) 599-605
  • 17 Skoe E, Kraus N. Auditory brain stem response to complex sounds: a tutorial.  Ear Hear. 2010;  31 (3) 302-324
  • 18 Galbraith GC, Arbagey PW, Branski R, Comerci N, Rector PM. Intelligible speech encoded in the human brain stem frequency-following response.  Neuroreport. 1995;  6 (17) 2363-2367
  • 19 Song JH, Nicol T, Kraus N. Test-retest reliability of the speech-evoked auditory brainstem response.  Clin Neurophysiol. 2010;  In press Corrected Proof
  • 20 Hall J. New Handbook of Auditory Evoked Responses. Boston, MA: Allyn & Bacon; 2007
  • 21 Basu M, Krishnan A, Weber-Fox C. Brainstem correlates of temporal auditory processing in children with specific language impairment.  Dev Sci. 2010;  13 (1) 77-91
  • 22 Banai K, Hornickel J, Skoe E, Nicol T, Zecker S, Kraus N. Reading and subcortical auditory function.  Cereb Cortex. 2009;  19 (11) 2699-2707
  • 23 Billiet CR, Bellis TJ. The relationship between brainstem temporal processing and performance on tests of central auditory function in children with reading disorders.  J Speech Lang Hear Res. 2011;  54 (1) 228-242
  • 24 Wible B, Nicol T, Kraus N. Atypical brainstem representation of onset and formant structure of speech sounds in children with language-based learning problems.  Biol Psychol. 2004;  67 (3) 299-317
  • 25 Dhar S, Abel R, Hornickel J et al. Exploring the relationship between physiological measures of cochlear and brainstem function.  Clin Neurophysiol. 2009;  120 (5) 959-966
  • 26 Strait DL, Kraus N, Skoe E, Ashley R. Musical experience and neural efficiency: effects of training on subcortical processing of vocal expressions of emotion.  Eur J Neurosci. 2009;  29 (3) 661-668
  • 27 Gao E, Suga N. Experience-dependent plasticity in the auditory cortex and the inferior colliculus of bats: role of the corticofugal system.  Proc Natl Acad Sci U S A. 2000;  97 (14) 8081-8086
  • 28 Suga N, Xiao Z, Ma X, Ji W. Plasticity and corticofugal modulation for hearing in adult animals.  Neuron. 2002;  36 (1) 9-18
  • 29 Luo F, Wang Q, Kashani A, Yan J. Corticofugal modulation of initial sound processing in the brain.  J Neurosci. 2008;  28 (45) 11615-11621
  • 30 Bajo VM, Nodal FR, Moore DR, King AJ. The descending corticocollicular pathway mediates learning-induced auditory plasticity.  Nat Neurosci. 2010;  13 (2) 253-260
  • 31 Lee KM, Skoe E, Kraus N, Ashley R. Selective subcortical enhancement of musical intervals in musicians.  J Neurosci. 2009;  29 (18) 5832-5840
  • 32 Strait DL, Kraus N, Parbery-Clark A, Ashley R. Musical experience shapes top-down auditory mechanisms: evidence from masking and auditory attention performance.  Hear Res. 2010;  261 (1–2) 22-29
  • 33 Chan AS, Ho Y-C, Cheung M-C. Music training improves verbal memory.  Nature. 1998;  396 (6707) 128
  • 34 Micheyl C, Carbonnel O, Collet L. Medial olivocochlear system and loudness adaptation: differences between musicians and non-musicians.  Brain Cogn. 1995;  29 (2) 127-136
  • 35 Micheyl C, Khalfa S, Perrot X, Collet L. Difference in cochlear efferent activity between musicians and non-musicians.  Neuroreport. 1997;  8 (4) 1047-1050
  • 36 Perrot X, Micheyl C, Khalfa S, Collet L. Stronger bilateral efferent influences on cochlear biomechanical activity in musicians than in non-musicians.  Neurosci Lett. 1999;  262 (3) 167-170
  • 37 Brashears SM, Morlet TG, Berlin CI, Hood LJ. Olivocochlear efferent suppression in classical musicians.  J Am Acad Audiol. 2003;  14 (6) 314-324
  • 38 Musacchia G, Sams M, Skoe E, Kraus N. Musicians have enhanced subcortical auditory and audiovisual processing of speech and music.  Proc Natl Acad Sci U S A. 2007;  104 (40) 15894-15898
  • 39 Wong PCM, Skoe E, Russo NM, Dees T, Kraus N. Musical experience shapes human brainstem encoding of linguistic pitch patterns.  Nat Neurosci. 2007;  10 (4) 420-422
  • 40 Toro JM, Trobalón JB. Statistical computations over a speech stream in a rodent.  Percept Psychophys. 2005;  67 (5) 867-875
  • 41 Hauser MD, Newport EL, Aslin RN. Segmentation of the speech stream in a non-human primate: statistical learning in cotton-top tamarins.  Cognition. 2001;  78 (3) B53-B64
  • 42 Saffran JR, Aslin RN, Newport EL. Statistical learning by 8-month-old infants.  Science. 1996;  274 (5294) 1926-1928
  • 43 Chandrasekaran B, Hornickel J, Skoe E, Nicol TG, Kraus N. Context-dependent encoding in the human auditory brainstem relates to hearing speech in noise: implications for developmental dyslexia.  Neuron. 2009;  64 (3) 311-319
  • 44 Sussman ES, Bregman AS, Wang WJ, Khan FJ. Attentional modulation of electrophysiological activity in auditory cortex for unattended sounds within multistream auditory environments.  Cogn Affect Behav Neurosci. 2005;  5 (1) 93-110
  • 45 Sussman E, Steinschneider M. Neurophysiological evidence for context-dependent encoding of sensory input in human auditory cortex.  Brain Res. 2006;  1075 (1) 165-174
  • 46 Griffiths TD, Uppenkamp S, Johnsrude I, Josephs O, Patterson RD. Encoding of the temporal regularity of sound in the human brainstem.  Nat Neurosci. 2001;  4 (6) 633-637
  • 47 Skoe E, Kraus N. Hearing it again and again: on-line subcortical plasticity in humans.  PLoS ONE. 2010;  5 (10) e13645
  • 48 Strait DL, Ashley R, Hornickel J, Kraus N. Context-dependent encoding of speech in the human auditory brainstem as a marker of musical aptitude. Presented at: ARO 33rd MidWinter Meeting; 2010; Anaheim, CA
  • 49 Tzounopoulos T, Kraus N. Learning to encode timing: mechanisms of plasticity in the auditory brainstem.  Neuron. 2009;  62 (4) 463-469
  • 50 Hornickel J, Skoe E, Nicol T, Zecker S, Kraus N. Subcortical differentiation of stop consonants relates to reading and speech-in-noise perception.  Proc Natl Acad Sci U S A. 2009;  106 (31) 13022-13027
  • 51 Anderson S, Skoe E, Chandrasekaran B, Kraus N. Neural timing is linked to speech perception in noise.  J Neurosci. 2010;  30 (14) 4922-4926
  • 52 Kandler K, Clause A, Noh J. Tonotopic reorganization of developing auditory brainstem circuits.  Nat Neurosci. 2009;  12 (6) 711-717
  • 53 Burkard RF, Sims D. A comparison of the effects of broadband masking noise on the auditory brainstem response in young and older adults.  Am J Audiol. 2002;  11 (1) 13-22
  • 54 Russo N, Nicol T, Musacchia G, Kraus N. Brainstem responses to speech syllables.  Clin Neurophysiol. 2004;  115 (9) 2021-2030
  • 55 Cunningham J, Nicol TG, Zecker SG, Bradlow AR, Kraus N. Neurobiologic responses to speech in noise in children with learning problems: deficits and strategies for improvement.  Clin Neurophysiol. 2001;  112 (5) 758-767
  • 56 Tallal P, Stark RE. Speech acoustic-cue discrimination abilities of normally developing and language-impaired children.  J Acoust Soc Am. 1981;  69 (2) 568-574
  • 57 Tallal P, Piercy M. Developmental aphasia: rate of auditory processing and selective impairment of consonant perception.  Neuropsychologia. 1974;  12 (1) 83-93
  • 58 Hedrick MS, Younger MS. Perceptual weighting of stop consonant cues by normal and impaired listeners in reverberation versus noise.  J Speech Lang Hear Res. 2007;  50 (2) 254-269
  • 59 Fellowes JM, Remez RE, Rubin PE. Perceiving the sex and identity of a talker without natural vocal timbre.  Percept Psychophys. 1997;  59 (6) 839-849
  • 60 Meddis R, O'Mard L. A unitary model of pitch perception.  J Acoust Soc Am. 1997;  102 (3) 1811-1820
  • 61 Bird J, Darwin CJ. Effects of a difference in fundamental frequency in separating two sentences. In: Palmer AR, et al, eds. Psychophysical and Physiological Advances in Hearing. London, United Kingdom: Whurr; 1998: 263-269
  • 62 Assmann PF, Summerfield Q. Perceptual segregation of concurrent vowels.  J Acoust Soc Am. 1987;  82 S120
  • 63 Culling JF, Darwin CJ. Perceptual separation of simultaneous vowels: within and across-formant grouping by F0.  J Acoust Soc Am. 1993;  93 (6) 3454-3467
  • 64 Oxenham AJ. Pitch perception and auditory stream segregation: implications for hearing loss and cochlear implants.  Trends Amplif. 2008;  12 (4) 316-331
  • 65 Brokx JP, Nooteboom SG. Intonation and the perceptual separation of simultaneous voices.  J Phonetics. 1982;  10 23-26
  • 66 de Cheveigne A. Concurrent vowel identification III: a neural model of harmonic interference cancellation.  J Acoust Soc Am. 1997;  101 2857-2865
  • 67 Alain C, Reinke K, He Y, Wang C, Lobaugh N. Hearing two things at once: neurophysiological indices of speech segregation and identification.  J Cogn Neurosci. 2005;  17 (5) 811-818
  • 68 Song J, Skoe E, Banai K, Kraus N. Perception of speech in noise: neural correlates.  J Cogn Neurosci. 2010;  0 1-12
  • 69 Anderson S, Skoe E, Chandrasekaran B, Zecker S, Kraus N. Brainstem correlates of speech-in-noise perception in children.  Hear Res. 2010;  270 (1–2) 151-157
  • 70 Redford MA, Diehl RL. The relative perceptual distinctiveness of initial and final consonants in CVC syllables.  J Acoust Soc Am. 1999;  106 (3 Pt 1) 1555-1565
  • 71 Hornickel J, Chandrasekaran B, Zecker S, Kraus N. Auditory brainstem measures predict reading and speech-in-noise perception in school-aged children.  Behav Brain Res. 2011;  216 (2) 597-605
  • 72 Parbery-Clark A, Skoe E, Lam C, Kraus N. Musician enhancement for speech-in-noise.  Ear Hear. 2009;  30 (6) 653-661
  • 73 Pichora-Fuller MK, Souza PE. Effects of aging on auditory processing of speech.  Int J Audiol. 2003;  42 (Suppl 2) S11-S16
  • 74 Heinrich A, Schneider BA, Craik FI. Investigating the influence of continuous babble on auditory short-term memory performance.  Q J Exp Psychol (Colchester). 2008;  61 (5) 735-751
  • 75 Woodcock RW, McGrew KS, Mather N. Woodcock-Johnson III Tests of Cognitive Abilities. Itasca, IL: Riverside Publishing; 2001
  • 76 Parbery-Clark A, Skoe E, Kraus N. Musical experience limits the degradative effects of background noise on the neural processing of sound.  J Neurosci. 2009;  29 (45) 14100-14107
  • 77 Song JH, Skoe E, Wong PCM, Kraus N. Plasticity in the adult human auditory brainstem following short-term linguistic training.  J Cogn Neurosci. 2008;  20 (10) 1892-1902
  • 78 de Boer J, Thornton ARD. Neural correlates of perceptual learning in the auditory brainstem: efferent activity predicts and reflects improvement at a speech-in-noise discrimination task.  J Neurosci. 2008;  28 (19) 4929-4937
  • 79 Russo NM, Nicol TG, Zecker SG, Hayes EA, Kraus N. Auditory training improves neural timing in the human brainstem.  Behav Brain Res. 2005;  156 (1) 95-103
  • 80 Suga N, Ma X. Multiparametric corticofugal modulation and plasticity in the auditory system.  Nat Rev Neurosci. 2003;  4 (10) 783-794
  • 81 Kumar AU, Hegde M, Mayaleela. Perceptual learning of non-native speech contrast and functioning of the olivocochlear bundle.  Int J Audiol. 2010;  49 (7) 488-496
  • 82 Carcagno S, Plack CJ. Subcortical plasticity following perceptual learning in a pitch discrimination task.  J Assoc Res Otolaryngol. 2011;  12 (1) 89-100
  • 83 Russo NM, Hornickel J, Nicol T, Zecker S, Kraus N. Biological changes in auditory function following training in children with autism spectrum disorders.  Behav Brain Funct. 2010;  6 60

Nina KrausPh.D. 

2240 Campus Drive

Evanston, IL 60208

Email: nkraus@northwestern.edu