Semin Hear 2011; 32(2): 156-162
DOI: 10.1055/s-0031-1277237
© Thieme Medical Publishers

The Manipulation of Auditory Brain Stem Response Data to Predict the Behavioral Audiogram during Infancy

André M. Marcoux1
  • 1Department of Audiology and Speech Language Pathology, University of Ottawa, Ottawa, Canada
Further Information

Publication History

Publication Date:
18 July 2011 (online)

ABSTRACT

The auditory brain stem response (ABR) is the current gold standard to estimate hearing thresholds during infancy. The clinical protocols to illicit the ABR are documented, and the correlation between the ABR and auditory sensitivity has been validated extensively. Research also has focused on the maturation of the auditory system and its effects on the ABR threshold. In situ ABR measures were conducted to quantify the maturation of the ABR during infancy for the purposes of controlling for this effect when using ABR thresholds to estimate hearing levels on an audiogram. This article describes a corrective procedure that permits the clinician to obtain the estimated hearing level from ABR thresholds during infancy when immature responses are prevalent.

REFERENCES

  • 1 Balfour P B, Pillion J P, Gaskin A E. Distortion product otoacoustic emission and auditory brain stem response measures of pediatric sensorineural hearing loss with islands of normal sensitivity.  Ear Hear. 1998;  19 (6) 463-472
  • 2 Elberling C, Don M. Threshold characteristics of the human auditory brain stem response.  J Acoust Soc Am. 1987;  81 (1) 115-121
  • 3 Hayes D, Jerger J. Auditory brainstem response (ABR) to tone-pips: results in normal and hearing-impaired subjects.  Scand Audiol. 1982;  11 (3) 133-142
  • 4 Gorga M P, Kaminski J R, Beauchaine K L, Bergman B M. A comparison of auditory brain stem response thresholds and latencies elicited by air-and bone-conducted stimuli.  Ear Hear. 1993;  14 85-94
  • 5 Stapells D R, Picton T W, Durieux-Smith A, Edwards C G, Moran L M. Thresholds for short-latency auditory-evoked potentials to tones in notched noise in normal-hearing and hearing-impaired subjects.  Audiology. 1990;  29 (5) 262-274
  • 6 Stapells D R, Gravel J S, Martin B A. Thresholds for auditory brain stem responses to tones in notched noise from infants and young children with normal hearing or sensorineural hearing loss.  Ear Hear. 1995;  16 (4) 361-371
  • 7 Gorga M P, Johnson T A, Kaminski J R, Beauchaine K L, Garner C A, Neely S T. Using a combination of click- and tone burst-evoked auditory brain stem response measurements to estimate pure-tone thresholds.  Ear Hear. 2006;  27 (1) 60-74
  • 8 Eiten L R. The challenges and rewards of early identification. In: Seewald RC, Bamford J, eds. A Sound Foundation through Early Amplification: Proceedings of the 3rd International Conference. Stäfa, Switzerland: Phonak AG; 2003: 231-246
  • 9 Bagatto M, Moodie S, Scollie S et al.. Clinical protocols for hearing instrument fitting in the Desired Sensation Level method.  Trends Amplif. 2005;  9 (4) 199-226
  • 10 American Academy of Pediatrics, Joint Committee on Infant Hearing . Year 2007 position statement: principles and guidelines for early hearing detection and intervention programs.  Pediatrics. 2007;  120 (4) 898-921
  • 11 Wood C C, Allison T. Interpretation of evoked potentials: a neurophysiological perspective.  Can J Psychol. 1981;  35 (2) 113-135
  • 12 Marcoux A, Hansen M. Ensuring accuracy of the pediatric hearing aid fitting.  Trends Amplif. 2003;  7 (1) 11-27
  • 13 Marcoux A M. Maturation of auditory function related to hearing threshold estimations using the auditory brainstem response during infancy.  Int J Pediatr Otorhinolaryngol. 2011;  75 (2) 163-170
  • 14 Nozza R J, Henson A M. Unmasked thresholds and minimum masking in infants and adults: separating sensory from nonsensory contributions to infant-adult differences in behavioral thresholds.  Ear Hear. 1999;  20 (6) 483-496
  • 15 Sininger Y S, Abdala C, Cone-Wesson B. Auditory threshold sensitivity of the human neonate as measured by the auditory brainstem response.  Hear Res. 1997;  104 (1-2) 27-38
  • 16 Bagatto M P, Scollie S D, Seewald R C, Moodie K S, Hoover B M. Real-ear-to-coupler difference predictions as a function of age for two coupling procedures.  J Am Acad Audiol. 2002;  13 (8) 407-415
  • 17 Seewald R, Scollie S. Infants are not average adults: Implications for audiometric testing.  Hear J. 1999;  52 64-72
  • 18 Seewald R C, Cornelisse L E, Ramji K V, Sinclair S T, Moodie K S, Jamieson D G. DSLv4.1 for Windows: A software implementation of the desired sensation level (DSL[i/o]) method for fitting linear gain and wide-dynamic-range compression hearing instruments. User's manual. London, Canada: Hearing Health Care Research Unit; 1997
  • 19 Marcoux A M. Considering the real-ear-to-coupler difference during the verification of hearing aid fittings for older children and adults.  Can Hear Rep. 2009;  4 (3) 27-34
  • 20 Bentler R A, Pavlovic C V. Transfer functions and correction factors used in hearing aid evaluation and research.  Ear Hear. 1989;  10 (1) 58-63
  • 21 Feigin J A, Kopun J G, Stelmachowicz P G, Gorga M P. Probe-tube microphone measures of ear-canal sound pressure levels in infants and children.  Ear Hear. 1989;  10 (4) 254-258
  • 22 Kruger B. An update on the external ear resonance in infants and young children.  Ear Hear. 1987;  8 (6) 333-336
  • 23 Abdala C, Keefe D H, Oba S I. Distortion product otoacoustic emission suppression tuning and acoustic admittance in human infants: birth through 6 months.  J Acoust Soc Am. 2007;  121 (6) 3617-3627
  • 24 Keefe D H, Bulen J C, Arehart K H, Burns E M. Ear-canal impedance and reflection coefficient in human infants and adults.  J Acoust Soc Am. 1993;  94 (5) 2617-2638
  • 25 Bredberg G. Cellular pattern and nerve supply of the human organ of corti.  Acta Otolaryngol Suppl. 1968;  236 (Suppl) 1-135
  • 26 Eggermont J J, Brown D K, Ponton C W, Kimberley B P. Comparison of distortion product otoacoustic emission (DPOAE) and auditory brain stem response (ABR) traveling wave delay measurements suggests frequency-specific synapse maturation.  Ear Hear. 1996;  17 (5) 386-394
  • 27 Moore J K, Perazzo L M, Braun A. Time course of axonal myelination in the human brainstem auditory pathway.  Hear Res. 1995;  87 (1-2) 21-31
  • 28 Ponton C W, Eggermont J J, Coupland S G, Winkelaar R. Frequency-specific maturation of the eighth nerve and brain-stem auditory pathway: evidence from derived auditory brain-stem responses (ABRs).  J Acoust Soc Am. 1992;  91 (3) 1576-1586
  • 29 Ribeiro F M, Carvallo R M, Marcoux A M. Auditory steady-state evoked responses for preterm and term neonates.  Audiol Neurootol. 2010;  15 (2) 97-110
  • 30 Rance G, Tomlin D. Maturation of auditory steady-state responses in normal babies.  Ear Hear. 2006;  27 (1) 20-29

André M MarcouxPh.D. 

Department of Audiology and Speech Language Pathology

University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada

Email: amarcoux@uottawa.ca