Planta Med 2012; 78(3): 219-224
DOI: 10.1055/s-0031-1280377
Biological and Pharmacological Activity
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

Bioguided Isolation of (9Z)-Octadec-9-enoic Acid from Phellodendron amurense Rupr. and Identification of Fatty Acids as PTP1B Inhibitors

Dirk Steinmann1 [*] , Renate Rita Baumgartner2 [*] , Elke Hannelore Heiss2 , Sophie Bartenstein2 , Atanas Georgiev Atanasov2 , Verena Maria Dirsch2 , Markus Ganzera1 , Hermann Stuppner1
  • 1Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
  • 2Department of Pharmacognosy, University of Vienna, Vienna, Austria
Further Information

Publication History

received August 10, 2011 revised October 14, 2011

accepted October 29, 2011

Publication Date:
28 November 2011 (online)

Abstract

The therapy of type-2 diabetes mellitus is one of the major challenges of our age. A possible strategy to prevent the progression of this disease is the inhibition of protein tyrosine phosphatase 1B (PTP1B), a major negative regulator in the insulin and leptin signalling pathway. Phellodendri amurensis cortex is a well-known Asian herbal drug traditionally used as antiphlogistic, antibacterial, and anti-inflammatory agent, and its efficacy against diabetes-related symptoms is reported as well. However, information regarding active principle(s) or the molecular mode of action was scarce. By bioguided isolation using an in vitro enzyme assay with human recombinant PTP1B, (9Z)-octadec-9-enoic acid (oleic acid) could be identified as a major PTP1B inhibitor in the bark of Phellodendron amurense Rupr. (Rutaceae); it showed an IC50 value of 6.2 µM. Consistent with this inhibition of PTP1B, oleic acid was capable of enhancing insulin signalling in wild-type, but not PTP1B knockout fibroblasts. By testing a series of other fatty acids of different chain length and degree of saturation, their general PTP1B-inhibitory potential in the micromolar range was observed. More pronounced effects were associated with a longer carbon backbone and saturation of the double bonds. Therefore, our work provides first scientific evidences for the antidiabetic properties of P. amurense via a new target, effects which seem to be explainable by oleic acid. The discovery of a PTP1B inhibition by many fatty acids also adds a novel facet to the pharmacological properties of a class of compounds that is found in many food items in considerable amount and triggers speculation over their possible involvement in the feedback regulation of cellular fatty acid synthesis.

Supporting Information

References

  • 1 Unwin N, Whiting D, Gan D, Jacqmain O, Ghyoot G. IDF Diabetes Atlas. Brussels: International Diabetes Federation; 2009
  • 2 Zhang Z Y, Lee S Y. PTP1B inhibitors as potential therapeutics in the treatment of type 2 diabetes and obesity.  Expert Opin Investig Drug. 2003;  12 223-233
  • 3 Koren S, Fantus I G. Inhibition of the protein tyrosine phosphatase PTP1B: potential therapy for obesity, insulin resistance and type-2 diabetes mellitus.  Best Pract Res Clin Endocrinol. 2007;  21 621-640
  • 4 [Anonymous]. Arzneibuch der Chinesischen Medizin. Stuttgart: Deutscher Apotheker Verlag; 2009
  • 5 Uchiyama T, Kamikawa H, Ogita Z. Anti-ulcer effect of extract from Phellodendri cortex.  Yakugaku Zasshi. 1989;  109 672-676
  • 6 Chen M L, Xian Y F, Ip S P, Tsai S H, Yang J Y, Che C T. Chemical and biological differentiation of Cortex Phellodendri Chinensis and Cortex Phellodendri Amurensis.  Planta Med. 2010;  76 1530-1535
  • 7 Li Y B, Zhang T J, Zhang X L, Xu H Y, Liu C X. Chemical fingerprint analysis of Phellodendri Amurensis Cortex by ultra performance LC/Q-TOF-MS methods combined with chemometrics.  J Sep Sci. 2010;  33 3347-3353
  • 8 Kumar A P, Graham H, Robson C, Thompson I M, Ghosh R. Natural products: potential for developing Phellodendron amurense bark extract for prostate cancer management.  Minirev Med Chem. 2010;  10 388-397
  • 9 Kim H J, Kong M K, Kim Y C. Beneficial effects of Phellodendri Cortex extract on hyperglycemia and diabetic nephropathy in streptozotocin-induced diabetic rats.  BMB Rep. 2008;  41 710-715
  • 10 Tanaka T, Maeda M, Kohno H, Murakami M, Kagami S, Miyake M, Wada K. Inhibition of azoxymethane-induced colon carcinogenesis in male F344 rats by the citrus limonoids obacunone and limonin.  Carcinogenesis. 2001;  22 193-198
  • 11 Li H Y, Guo L L, Jie S H, Liu W, Zhu J, Du W, Fan L L, Wang X J, Fu B J, Huang S. Berberine inhibits SDF-1-induced AML cells and leukemic stem cells migration via regulation of SDF-1 level in bone marrow stromal cells.  Biomed Pharmacother. 2008;  62 573-578
  • 12 Yu H H, Kim K J, Cha J D, Kim H K, Lee Y E, Choi N Y, You Y O. Antimicrobial activity of berberine alone and in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus.  J Med Food. 2005;  8 454-461
  • 13 Zhou X Q, Zeng X N, Kong H, Sun X L. Neuroprotective effects of berberine on stroke models in vitro and in vivo.  Neurosci Lett. 2008;  447 31-36
  • 14 Liu W H, Tang F T, Deng Y H, Li X J, Lan T, Zhang X Y, Huang H Q, Liu P Q. Berberine reduces fibronectin and collagen accumulation in rat glomerular mesangial cells cultured under high glucose condition.  Mol Cell Biochem. 2009;  325 99-105
  • 15 Sadowska J, Johansson B, Johannessen E, Friman R, Bronlarz-Press L, Rosenholm J B. Characterization of ozonated vegetable oils by spectroscopic and chromatographic methods.  Chem Phys Lipids. 2008;  151 85-91
  • 16 Baumgartner R R, Steinmann D, Ganzera M, Atanasov A G, Dirsch V M, Stuppner H, Heiss E H. Bioactivity-guided isolation of 1, 2, 3, 4, 6-penta-O-galloyl-D-glucopyranose from Paeonia lactiflora roots as a PTP1B inhibitor.  J Nat Prod. 2010;  73 1578-1581
  • 17 Chen C H, Zhang Y B, Huang C. Berberine inhibits PTP1B activity and mimics insulin action.  Biochem Biophys Res Commun. 2010;  397 543-547
  • 18 Zhang W, Hong D, Zhou Y, Zhang Y, Shen Q, Li J Y, Hu L H, Li J. Ursolic acid and its derivative inhibit protein tyrosine phosphatase 1B, enhancing insulin receptor phosphorylation and stimulating glucose uptake.  BBA Gen Subjects. 2006;  1760 1505-1512
  • 19 Swarup G, Cohen S, Garbers D L. Inhibition of membrane phospotyrosyl-protein phosphatase-activity by vanadate.  Biochem Bioph Res Commun. 1982;  107 1104-1109
  • 20 Iversen L F, Moller K B, Pedersen A K, Peters G H, Petersen A S, Andersen H S, Branner S, Mortensen S B, Moller N P H. Structure determination of T cell protein-tyrosine phosphatase.  J Biol Chem. 2002;  277 19982-19990
  • 21 Zhang J W, Wu W, Li D F, Guo Y, Ding H L. Overactivation of NF-kappa B impairs insulin sensitivity and mediates palmitate-induced insulin resistance in C2C12 skeletal muscle cells.  Endocrine. 2010;  37 157-166
  • 22 Choi S J, Kim F, Schwartz M W, Wisse B E. Cultured hypothalamic neurons are resistant to inflammation and insulin resistance induced by saturated fatty acids.  Am J Physiol Endocrinol Metab. 2010;  298 E1122-E1130
  • 23 Coll T, Eyre E, Rodriguez-Calvo R, Palomer X, Sanchez R M, Merlos M, Laguna J C, Vazquez-Carrera M. Oleate reverses palmitate-induced insulin resistance and inflammation in skeletal muscle cells.  J Biol Chem. 2008;  283 11107-11116
  • 24 Ruiz-Rodriguez A, Reglero G, Ibañez E. Recent trends in the advanced analysis of bioactive fatty acids.  J Pharm Biomed. 2010;  51 305-326
  • 25 Belury M A, Gu Y H. Conjugated linoleic acid (CLA) reduces hepatic levels of phospho-Akt in diabetic, but not lean, ZDF rats.  FASEB J. 2003;  17 A807
  • 26 Emekli-Alturfan E, Kasikci E, Yarat A. Effects of oleic acid on the tissue factor activity, blood lipids, antioxidant and oxidant parameters of streptozotocin induced diabetic rats fed a high-cholesterol diet.  Med Chem Res. 2010;  19 1011-1024

1 Both authors contributed equally to this work.

Prof. Dr. Hermann Stuppner

Institute of Pharmacy/Pharmacognosy
University of Innsbruck

Innrain 52

6020 Innsbruck

Austria

Phone: +43 51 25 07 53 00

Fax: +43 51 25 07 29 39

Email: hermann.stuppner@uibk.ac.at