3
Arbeitsgruppe Hochpräzisionsstrahlentherapie, OncoRay – Nationales Zentrum für Strahlenforschung in der Onkologie Dresden, Medizinische Fakultät, Universitätsklinikum Carl Gustav Carus, TU Dresden
2
Klinik für Nuklearmedizin, Medizinische Fakultät, Universitätsklinikum Carl Gustav Carus, TU Dresden
,
D. Zips
3
Arbeitsgruppe Hochpräzisionsstrahlentherapie, OncoRay – Nationales Zentrum für Strahlenforschung in der Onkologie Dresden, Medizinische Fakultät, Universitätsklinikum Carl Gustav Carus, TU Dresden
4
Arbeitsgruppe Experimentelle Strahlentherapie von Tumoren, OncoRay – Nationales Zentrum für Strahlenforschung in der Onkologie Dresden, Medizinische Fakultät, Universitätsklinikum Carl Gustav Carus, TU Dresden
Mit den aktuellen Entwicklungen der PET/CT-Bildgebung werden wichtige Anforderungen für den Einsatz der biologischen Bildgebung für die bildgestützte Hochpräzisionsstrahlentherapie wie Gewährleistung der bestmöglichen Koregistrierung, hohe Genauigkeit der quantitativen funktionellen PET-Parameter adressiert. Diese technischen Entwicklungen umfassen die Time-of-Flight (TOF) Technik, Verbesserung der tomografischen Bildrekonstruktion, Weiterentwicklung von Methoden zur Berücksichtigung von atmungskorrelierter Bewegung und die Datenverarbeitung. Damit werden die technischen Voraussetzungen zur Testung von neuen Konzepten der biologisch individualisierten Hochpräzisionsstrahlentherapie mit dem Ziel der effektiveren Behandlung von Krebserkrankungen weiter verbessert.
Abstract
Current developments in PET/CT imaging address important requirements for the implementation of biological imaging for image-guided high-precision radiotherapy, i. e. high accuracy in co-registration and quantitative assessment of PET parameters. These developments include the time-of-flight technique, improved tomographic image reconstruction, further development of breathing-related movement and data processing. This provides an improved technical basis for the testing of novel concepts in biologically individualized high-precision radiotherapy aiming for better treatment of cancer patients.
Unterstützt durch das BMBF (03ZIK/OncoRay und 03NUK006B).
Literatur
1 Apostolova I, Wiemker R, Paulus T et al. Combined correction of recovery effect and motion blur for SUV quantification of solitary pulmonary nodules in FDG PET/CT. Eur Radiol 2010; 20: 1868-1877
3 Black QC, Grills IS, Kestin LL et al. Defining a radiotherapy target with positron emission tomography. Int J Radiat Oncol Biol Phys 2004; 60: 1272-1282
6 Caldwell CB, Mah K, Skinner M et al. Can PET provide the 3D extent of tumor motion for individualized internal target volumes? A phantom study of the limitations of CT and the promise of PET. Int J Radiat Oncol Biol Phys 2003; 55: 1381-1393
7 Chang J, Thakur SB, Huang W et al. Magnetic resonance spectroscopy imaging (MRSI) and brain functional magnetic resonance imaging (fMRI) for radiotherapy treatment planning of glioma. Technol Cancer Res Treat 2008; 7: 349-362
8 Christian N, Lee JA, Bol A et al. The limitation of PET imaging for biological adaptive-IMRT assessed in animal models. Radiother Oncol 2009; 91: 101-106
10 Daisne JF, Sibomana M, Bol A et al. Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms. Radiother Oncol 2003; 69: 247-250
11 Dawood M, Buther F, Jiang X et al. Respiratory motion correction in 3-D PET data with advanced optical flow algorithms. IEEE Trans Med Imaging 2008; 27: 1164-1175
12 Dirix P, Vandecaveye V, De Keyzer F et al. Dose painting in radiotherapy for head and neck squamous cell carcinoma: value of repeated functional imaging with (18)F-FDG PET, (18)F-fluoromisonidazole PET, diffusion-weighted MRI, and dynamic contrast-enhanced MRI. J Nucl Med 2009; 50: 1020-1027
13 Drever L, Robinson DM, McEwan A et al. A local contrast based approach to threshold segmentation for PET target volume delineation. Med Phys 2006; 33: 1583-1594
15 Faber TL, Raghunath N, Tudorascu D et al. Motion correction of PET brain images through deconvolution: I. Theoretical development and analysis in software simulations. Phys Med Biol 2009; 54: 797-811
17 Gulliksrud K, Ovrebo KM, Mathiesen B et al. Differentiation between hypoxic and non-hypoxic experimental tumors by dynamic contrast-enhanced magnetic resonance imaging. Radiother Oncol 2011; 98: 360-364
18 Hatt M, Lamare F, Boussion N et al. Fuzzy hidden Markov chains segmentation for volume determination and quantitation in PET. Phys Med Biol 2007; 52: 3467-3491
20 Lamare F, Ledesma Carbayo MJ, Cresson T et al. List-mode-based reconstruction for respiratory motion correction in PET using non-rigid body transformations. Phys Med Biol 2007; 52: 5187-5204
21 Li H, Thorstad WL, Biehl KJ et al. A novel PET tumor delineation method based on adaptive region-growing and dual-front active contours. Med Phys 2008; 35: 3711-3721
22 Liu HH, Balter P, Tutt T et al. Assessing respiration-induced tumor motion and internal target volume using four-dimensional computed tomography for radiotherapy of lung cancer. Int J Radiat Oncol Biol Phys 2007; 68: 531-540
23 Morchel P, Melkus G, Yaromina A et al. Correlating quantitative MR measurements of standardized tumor lines with histological parameters and tumor control dose. Radiother Oncol 2010; 96: 123-130
24 Nehmeh SA, Erdi YE, Ling CC et al. Effect of respiratory gating on reducing lung motion artifacts in PET imaging of lung cancer. Med Phys 2002; 29: 366-371
25 Nestle U, Kremp S, Schaefer-Schuler A et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-Small cell lung cancer. J Nucl Med 2005; 46: 1342-1348
26 Perrin R, Evans PM, Webb S et al. The use of PET images for radiotherapy treatment planning: an error analysis using radiobiological endpoints. Med Phys 2010; 37: 516-531
27 Petit SF, Dekker AL, Seigneuric R et al. Intra-voxel heterogeneity influences the dose prescription for dose-painting with radiotherapy: a modelling study. Phys Med Biol 2009; 54: 2179-2196
28 Surti S, Kuhn A, Werner ME et al. Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med 2007; 48: 471-480
29 van Dalen JA, Hoffmann AL, Dicken V et al. A novel iterative method for lesion delineation and volumetric quantification with FDG PET. Nucl Med Commun 2007; 28: 485-493
30 Wolthaus JW, van Herk M, Muller SH et al. Fusion of respiration-correlated PET and CT scans: correlated lung tumour motion in anatomical and functional scans. Phys Med Biol 2005; 50: 1569-1583