J Knee Surg 2011; 24(2): 109-116
DOI: 10.1055/s-0031-1280873
ORIGINAL ARTICLE

© Thieme Medical Publishers

Comparison of Interface Stresses and Strains for Onlay and Inlay Unicompartmental Tibial Components

Peter S. Walker1 , 3 , Dhiraj S. Parakh1 , Miriam E. Chaudhary1 , 4 , Chih-Shing Wei2
  • 1Laboratory for Minimally – Invasive Surgery, NYU Hospital for Joint Diseases, New York, New York
  • 2The Cooper Union for the Advancement of Science and Art, New York, New York
  • 3Department of Mechanical and Aerospace Engineering, NYU-Poly, Brooklyn, New York
  • 4Department of Chemical and Biological Sciences, NYU-Poly, Brooklyn, New York
Further Information

Publication History

Publication Date:
08 June 2011 (online)

ABSTRACT

There are several types of designs used for unicompartmental tibial components. The all-plastic inlay component is recessed and it preserves bone around the outer edge of the tibia. For an onlay component, the entire condyle is resected, and the plastic bearing is usually metal-backed, although all-plastic components are also available. The purpose of this study was to investigate the hypothesis that while 6-mm inlay components require less bone removal, the peak stresses and strains at the surface of the bone will be much greater when compared with 8-mm metal-backed onlay components, and that all-plastic onlays will be only a slight advantage over inlays. Tibial models were generated using computed tomography (CT) scans, while typical inlay and onlay components were modeled. Finite element analyses of bones and components were completed by assigning material properties based on the CT scans and applying loads. Results indicated that plastic inlays generated 6 times more peak stress at the tibial surface when compared with metal-backed onlays. Moreover, models using inlay components produced strain values exceeding onlay components by a factor of 13.5 due to areas of softer bone at the interface. Off-center loading toward the anterior or posterior of the components produced similar results. The stresses and strains for the 8-mm all-plastic onlay were reduced compared with the inlay but still much higher than for the metal-backed onlay. These findings indicated that metal-backed onlays may be a better option when considering load distribution on the tibial surface.

REFERENCES

  • 1 Price A J, Rees J L, Beard D J, Gill R H, Dodd C A, Murray D M. Sagittal plane kinematics of a mobile-bearing unicompartmental knee arthroplasty at 10 years: a comparative in vivo fluoroscopic analysis.  J Arthroplasty. 2004;  19 (5) 590-597
  • 2 O'Rourke M R, Gardner J J, Callaghan J J et al.. The John Insall Award: unicompartmental knee replacement: a minimum twenty-one-year followup, end-result study.  Clin Orthop Relat Res. 2005;  440 27-37
  • 3 Argenson J N, Chevrol-Benkeddache Y, Aubaniac J M. Modern unicompartmental knee arthroplasty with cement: a three to ten-year follow-up study.  J Bone Joint Surg Am. 2002;  84-A (12) 2235-2239
  • 4 Barrett W P, Scott R D. Revision of failed unicondylar unicompartmental knee arthroplasty.  J Bone Joint Surg Am. 1987;  69 (9) 1328-1335
  • 5 Saragaglia D, Estour G, Nemer C, Colle P E. Revision of 33 unicompartmental knee prostheses using total knee arthroplasty: strategy and results.  Int Orthop. 2009;  33 (4) 969-974
  • 6 Bartley R E, Stulberg S D, Robb III W J, Sweeney H J. Polyethylene wear in unicompartmental knee arthroplasty.  Clin Orthop Relat Res. 1994;  299 (299) 18-24
  • 7 Walker P S, Ranawat C, Insall J. Fixation of the tibial components of condylar replacement knee prostheses.  J Biomech. 1976;  9 (4) 269-275
  • 8 Cartier P, Sanouiller J-L, Grelsamer R P. Unicompartmental knee arthroplasty surgery. 10-year minimum follow-up period.  J Arthroplasty. 1996;  11 (7) 782-788
  • 9 Hvid I. Trabecular bone strength at the knee.  Clin Orthop Relat Res. 1988;  227 210-221
  • 10 Goldstein S A, Wilson D L, Sonstegard D A, Matthews L S. The mechanical properties of human tibial trabecular bone as a function of metaphyseal location.  J Biomech. 1983;  16 (12) 965-969
  • 11 Romanowski M, Repicci J. Minimally invasive unicondylar arthroplasty using a freehand inlay technique.  Tech Knee Surg. 2004;  3 (1) 46-54
  • 12 Miegel R E, Walker P S, Nelson P C, Inadomi J, Needelman L, Maxine M. A compliant interface for total knee arthroplasty.  J Orthop Res. 1986;  4 (4) 486-493
  • 13 Shanbhag A S, Hasselman C T, Rubash H E. Technique for generating submicrometer ultra high molecular weight polyethylene particles.  J Orthop Res. 1996;  14 (6) 1000-1004
  • 14 Huang C H, Liau J J, Huang C H, Cheng C K. Stress analysis of the anterior tibial post in posterior stabilized knee prostheses.  J Orthop Res. 2007;  25 (4) 442-449
  • 15 Tandon R. Net Shaping of Co-Cr-Mo (F-75) via Metal Injection Molding: Cobalt-Base alloys for Biomedical applications.  ASTM International. 1999;  3-7
  • 16 Rapperport D J, Carter D R, Schurman D J. Contact finite element stress analysis of porous ingrowth acetabular cup implantation, ingrowth, and loosening.  J Orthop Res. 1987;  5 (4) 548-561
  • 17 Fukubayashi T, Kurosawa H. The contact area and pressure distribution pattern of the knee. A study of normal and osteoarthrotic knee joints.  Acta Orthop Scand. 1980;  51 (6) 871-879
  • 18 Blunn G W, Joshi A B, Lilley P A et al.. Polyethylene wear in unicondylar knee prostheses. 106 retrieved Marmor, PCA, and St Georg tibial components compared.  Acta Orthop Scand. 1992;  63 (3) 247-255
  • 19 Heinlein B, Kutzner I, Graichen F et al.. ESB Clinical Biomechanics Award 2008: Complete data of total knee replacement loading for level walking and stair climbing measured in vivo with a follow-up of 6-10 months.  Clin Biomech (Bristol, Avon). 2009;  24 (4) 315-326
  • 20 Mündermann A, Dyrby C O, D'Lima D D, Colwell Jr C W, Andriacchi T P. In vivo knee loading characteristics during activities of daily living as measured by an instrumented total knee replacement.  J Orthop Res. 2008;  26 (9) 1167-1172
  • 21 D'Lima D D, Patil S, Steklov N, Slamin J E, Colwell Jr C W. The Chitranjan Ranawat Award: in vivo knee forces after total knee arthroplasty.  Clin Orthop Relat Res. 2005;  440 45-49
  • 22 Thompson M T, Conditt M A, Otto J K et al.. The importance of good cement mantle with an all-poly inlay UKA.  56th Annual Ortho Res Society. 2010;  poster 2121
  • 23 Bauze A J, Costi J J, Stavrou P et al.. Cement penetration and stiffness of the cement-bone composite in the proximal tibia in a porcine model.  J Orthop Surg (Hong Kong). 2004;  12 (2) 194-198
  • 24 Hvid I, Bentzen S M, Jorgensen J. Remodelling of the tibial plateau after knee replacement.  Acta Orthop Scand. 1988;  59 (5) 567-573
  • 25 Bartel D L, Bicknell V L, Wright T M. The effect of conformity, thickness, and material on stresses in ultra-high molecular weight components for total joint replacement.  J Bone Joint Surg Am. 1986;  68 (7) 1041-1051
  • 26 Arastu M H, Vijayaraghavan J, Chissell H, Hull J B, Newman J H, Robinson J R. Early failure of a mobile-bearing unicompartmental knee replacement.  Knee Surg Sports Traumatol Arthrosc. 2009;  17 (10) 1178-1183
  • 27 Lisowski L, Bloemsaat-Minekus J, Curfs I, Lisowski A. Pain in the assessment of oxford phase 3 unicompartmental knee arthroplasty (UKA).  J Bone Joint Surg Br. 2010;  92-B 323
  • 28 Simpson D J, Price A J, Gulati A, Murray D W, Gill H S. Elevated proximal tibial strains following unicompartmental knee replacement—a possible cause of pain.  Med Eng Phys. 2009;  31 (7) 752-757
  • 29 Vince K G, Cyran L T. Unicompartmental knee arthroplasty: new indications, more complications?.  J Arthroplasty. 2004;  19 (4, Suppl 1) 9-16
  • 30 Springer B D, Scott R D, Thornhill T S. Conversion of failed unicompartmental knee arthroplasty to TKA.  Clin Orthop Relat Res. 2006;  446 214-220

Peter S. Walker

NYU School of Medicine, VA Medical Center

423 East 23rd Street, Annex Building 2, Room 206A, New York, NY 10010

Email: ptrswlkr@aol.com

    >