RSS-Feed abonnieren
DOI: 10.1055/s-0031-1281549
© Georg Thieme Verlag KG Stuttgart · New York
Synthetische Letalität als Therapiekonzept für die Behandlung maligner Neoplasien
Synthetic lethality as a new concept for the treatment of cancerPublikationsverlauf
eingereicht: 25.10.2010
akzeptiert: 24.3.2011
Publikationsdatum:
25. Juli 2011 (online)

Zusammenfassung
Als Antwort auf DNA-Schäden aktivieren Zellen ein komplexes DNA-Schadensantwort-Signal-Netzwerk, um den Zellzyklus zu stoppen, DNA zu reparieren oder bei extensiven Schäden den apoptotischen Zelltod einzuleiten. Gene der DNA-Schadensantwort („DNA damage response”) sind unter den am häufigsten mutierten Genen in humanen Krebserkrankungen, und es wird angenommen, dass diese Läsionen einen „Mutator-Phänotyp” hervorrufen, der die unkontrollierte Proliferation von Krebszellen fördert. Diese genetischen Läsionen können allerdings auch als die „Achilles-Ferse” der Krebszellen betrachtet werden. Diese Vulnerabilitäten sind insbesondere aus klinischer Sicht hochinteressant, da sie genetisch-gesteuerte neue Therapieansätze für die Behandlung maligner Neoplasien liefern. Hier diskutieren wir ein solches personalisiertes Therapiekonzept - die synthetische Letalität. Wir erörtern die ersten erfolgreichen klinischen Anwendungen der synthetischen Letalität zur Therapie von Krebserkrankungen und beleuchten präklinische Entwicklungen, die vor dem Schritt in die klinische Testung stehen.
Abstract
Following DNA damage, cells activate a complex DNA-damage-response (DDR) signaling network to arrest the cell cycle, repair DNA and, if the extend of damage is beyond repair capacity, induce apoptosis. DDR genes are among the most commonly mutated genes in human cancer and it is believed that these lesions promote a „mutator-phenotype” that fuels the runaway proliferation of cancer cells. However, these genetic lesions can also be seen as the „Achilles heel” of cancer. These tumor cell-specific vulnerabilities are of extraordinary clinical interest, since they allow genetically-guided novel therapeutic regimens for the treatment of cancer. Here, we discuss such a novel therapeutic concept - synthetic lethality. We focus on the first successful clinical applications of synthetic lethality for the treatment of different cancer entities. In addition, we give a brief review of recently developed, synthetic lethality-based approaches that are close to clinical testing.
Schlüsselwörter
Krebs - Onkogen - Tumorsuppressorgen - synthetische Letalität
Keywords
cancer - oncogene - tumor suppressor gene - synthetic lethality
Literatur
- 1
Audeh M W, Carmichael J, Penson R T. et al .
Oral poly(ADP-ribose)
polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations
and recurrent ovarian cancer: a proof-of-concept trial.
Lancet.
2010;
376
245-251
MissingFormLabel
- 2
Bryant H E, Schultz N, Thomas H D. et al .
Specific killing of BRCA2-deficient tumours
with inhibitors of poly(ADP-ribose) polymerase.
Nature.
2005;
434
913-917
MissingFormLabel
- 3
Dickgreber N, Huber R M, Reck M. et al .
Aktuelle Entwicklungen und Perspektiven
zielgerichteter Therapien.
Onkologie.
2010;
33
(Suppl 5)
2-11
MissingFormLabel
- 4
Dohner H, Stilgenbauer S, Benner A. et al .
Genomic aberrations and survival in chronic
lymphocytic leukemia.
N Engl J Med.
2000;
343
1910-1916
MissingFormLabel
- 5
Dumont F, Altmeyer A, Bischoff P.
Radiosensitising agents for the radiotherapy of cancer: novel
molecularly targeted approaches.
Expert Opin Ther Pat.
2009;
19
775-799
MissingFormLabel
- 6
Edwards S L, Brough R, Lord C J. et al .
Resistance to therapy caused by intragenic
deletion in BRCA2.
Nature.
2008;
451
1111-1115
MissingFormLabel
- 7
Farmer H, McCabe N, Lord C J. et al .
Targeting the DNA repair defect in BRCA
mutant cells as a therapeutic strategy.
Nature.
2005;
434
917-921
MissingFormLabel
- 8
Fong P C, Boss D S, Yap T A. et al .
Inhibition of poly(ADP-Ribose)
polymerase in tumors from BRCA mutation carriers.
N Engl
J Med.
2009;
361
123-134
MissingFormLabel
- 9
Greenman C, Wooster R, Futreal P A, Stratton M R, Easton D F.
Statistical analysis of pathogenicity of
somatic mutations in cancer.
Genetics.
2006;
173
2187-2198
MissingFormLabel
- 10
Gurley K E, Kemp C J.
Synthetic lethality
between mutation in Atm and DNA-PK(cs) during murine embryogenesis.
Curr Biol.
2001;
11
191-194
MissingFormLabel
- 11
Hanahan D, Weinberg R A.
Hallmarks
of cancer: the next generation.
Cell.
2011;
144
646-674
MissingFormLabel
- 12
Hoeijmakers J H.
Genome maintenance mechanisms for preventing
cancer.
Nature.
2001;
411
366-374
MissingFormLabel
- 13
Jiang H, Reinhardt H C, Bartkova J. et al .
The combined status of ATM and p53 link
tumor development with therapeutic response.
Genes Dev.
2009;
23
1895-1909
MissingFormLabel
- 14
Kaelin Jr W G.
The concept of synthetic lethality in the
context of anticancer therapy.
Nat Rev Cancer.
2005;
5
689-698
MissingFormLabel
- 15
Luo J, Emanuele M J, Li D. et al .
A genome-wide RNAi screen identifies multiple
synthetic lethal interactions with the Ras oncogene.
Cell.
2009;
137
835-848
MissingFormLabel
- 16
Martin S A, Lord C J, Ashworth A.
DNA repair deficiency as a therapeutic target in cancer.
Curr
Opin Genet Dev.
2008;
18
80-86
MissingFormLabel
- 17
Martins C P, Brown-Swigart L, Evan G I.
Modeling the therapeutic efficacy of p53
restoration in tumors.
Cell.
2006;
127
1323-1334
MissingFormLabel
- 18
Meindl A, Hellebrand H, Wiek C. et al .
Germline mutations in breast and ovarian
cancer pedigrees establish RAD51C as a human cancer susceptibility
gene.
Nat Genet.
2010;
42
410-414
MissingFormLabel
- 19
O’Shaughnessy J, Osborne C, Pippen J E. et al .
Iniparib plus
chemotherapy in metastatic triple-negative breast cancer.
N
Engl J Med.
2011;
364
205-214
MissingFormLabel
- 20
Reinhardt H C, Aslanian A S, Lees J A, Yaffe M B.
p53-deficient
cells rely on ATM- and ATR-mediated checkpoint signaling through
the p38MAPK/MK2 pathway for survival after DNA damage.
Cancer Cell.
2007;
11
175-189
MissingFormLabel
- 21
Reinhardt H C, Hasskamp P, Schmedding I. et al .
DNA Damage Activates a Spatially Distinct
Late Cytoplasmic Cell-Cycle Checkpoint Network Controlled by MK2-Mediated
RNA Stabilization.
Molecular Cell.
2010;
40
34-49
MissingFormLabel
- 22
Reinhardt H C, Jiang H, Hemann M T, Yaffe M B.
Exploiting synthetic
lethal interactions for targeted cancer therapy.
Cell
Cycle.
2009;
8
3112-3119
MissingFormLabel
- 23
Reinhardt H C, Yaffe M B.
Kinases that
control the cell cycle in response to DNA damage: Chk1, Chk2, and
MK2.
Curr Opin Cell Biol.
2009;
21
245-255
MissingFormLabel
- 24
Scholl C, Frohling S, Dunn I F. et al .
Synthetic lethal interaction between oncogenic
KRAS dependency and STK33 suppression in human cancer cells.
Cell.
2009;
137
821-834
MissingFormLabel
- 25
Soda M, Choi Y L, Enomoto M. et al .
Identification of the transforming EML4-ALK
fusion gene in non-small-cell lung cancer.
Nature.
2007;
448
561-566
MissingFormLabel
- 26
Tutt A, Robson M, Garber J E. et al .
Oral poly(ADP-ribose) polymerase inhibitor
olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast
cancer: a proof-of-concept trial.
Lancet.
2010;
376
235-244
MissingFormLabel
- 27
Tutt A N, Lord C J, McCabe N. et al .
Exploiting the DNA repair defect in BRCA mutant
cells in the design of new therapeutic strategies for cancer.
Cold Spring Harb Symp Quant Biol.
2005;
70
139-148
MissingFormLabel
- 28
Ventura A, Kirsch D G, McLaughlin M E. et al .
Restoration of p53 function leads
to tumour regression in vivo.
Nature.
2007;
445
661-665
MissingFormLabel
- 29
Wood L D, Parsons D W, Jones S. et al .
The genomic landscapes of human breast
and colorectal cancers.
Science.
2007;
318
1108-1113
MissingFormLabel
- 30
Xue W, Zender L, Miething C. et
al .
Senescence and tumour clearance is triggered by
p53 restoration in murine liver carcinomas.
Nature.
2007;
445
656-660
MissingFormLabel
PD Dr. med. Hans Christian Reinhardt
Universitätsklinik
Köln
Medizinische Klinik I
Weyertal
115B
50931 Köln
Telefon: 0221/478-96701
eMail:
christian.reinhardt@uk-koeln.de