Rofo 2012; 184(2): 136-142
DOI: 10.1055/s-0031-1281971
Technik und Medizinphysik
© Georg Thieme Verlag KG Stuttgart · New York

Substantial Dose Reduction in Modern Multi-Slice Spiral Computed Tomography (MSCT)-Guided Craniofacial and Skull Base Surgery

Substanzielle Dosiseinsparungen in der modernen Multi-Slice-Spiral-Computer-Tomografie(MSCT)-gesteuerten kraniofazialen und Schädelbasischirurgie
G. Widmann
1   Department of Radiology, Innsbruck Medical University
,
M. Fasser
1   Department of Radiology, Innsbruck Medical University
,
P. Schullian
2   Department of Cranio-Maxillo-Facial Surgery, Innsbruck Medical University
,
A. Zangerl
2   Department of Cranio-Maxillo-Facial Surgery, Innsbruck Medical University
,
W. Puelacher
2   Department of Cranio-Maxillo-Facial Surgery, Innsbruck Medical University
,
F. Kral
3   Department of Otorhinolaryngology, Innsbruck Medical University
,
H. Riechelmann
3   Department of Otorhinolaryngology, Innsbruck Medical University
,
W. Jaschke
1   Department of Radiology, Innsbruck Medical University
,
R. Bale
1   Department of Radiology, Innsbruck Medical University
› Author Affiliations
Further Information

Publication History

27 May 2011

28 October 2011

Publication Date:
13 January 2012 (online)

Abstract

Purpose: Reduction of the radiation exposure involved in image-guided craniofacial and skull base surgery is an important goal. The purpose was to evaluate the influence of low-dose protocols in modern multi-slice spiral computed tomography (MSCT) on target registration errors (TREs).

Materials and Methods: An anthropomorphic skull phantom with target markers at the craniofacial bone and the anterior skull base was scanned in Sensation Open (40-slice), LightSpeed VCT (64-slice) and Definition Flash (128-slice). Identical baseline protocols (BP) at 120 kV/100 mAs were compared to the following low-dose protocols (LD) in care dose/dose modulation: (LD-I) 100 kV/35ref. mAs, (LD-II) 80 kV/40 – 41ref. mAs, and (LD-III) 80 kV/15 – 17ref. mAs. CTDIvol and DLP were obtained. TREs using an optical navigation system were calculated for all scanners and protocols. Results were statistically analyzed in SPSS and compared for significant differences (p ≤ 0.05).

Results: CTDIvol for the Sensation Open/LightSpeed VCT/Definition Flash showed: (BP) 22.24 /32.48 /14.32 mGy; (LD-I) 4.61 /3.52 /1,62 mGy; (LD-II) 3.15 /2.01 /0.87 mGy; and (LD-III) na/0.76 /0.76 mGy. Differences between the BfS (Bundesamt für Strahlenschutz) reference CTDIvol of 9 mGy and the lowest CTDIvol were approximately 3-fold for Sensation Open, and 12-fold for the LightSpeed VCT and Definition Flash. A total of 33 registrations and 297 TRE measurements were performed. In all MSCT scanners, the TREs did not significantly differ between the low-dose and the baseline protocols.

Conclusion: Low-dose protocols in modern MSCT provided substantial dose reductions without significant influence on TRE and should be strongly considered in image-guided surgery.

Zusammenfassung

Ziel: Maßnahmen zur Reduktion der Strahlenexposition für bildgesteuerte kraniofaziale und Schädelbasischirugie sind ein bedeutendes Anliegen. Ziel der vorliegenden Arbeit war es, den Einfluss von Low-Dose-Protokollen in der modernen Multi-Slice-Spiralcomputertomografie (MSCT) auf den Target Registration Error (TRE) zu untersuchen.

Material und Methoden: Ein antropomorphes Schädelphantom mit Targetmarkern im kraniofazialen Knochen und der vorderen Schädelbasis wurde im Sensation Open (40-slice), LightSpeed VCT (64-slice) and Definition Flash (128-slice) gescannt. Einheitliche Basisprotokolle (BP) mit 120 kV/100 mAs wurden mit folgenden Low-Dose-Protokollen (LD) in care dose/dose modulation verglichen: (LD-I) 100 kV/35ref. mAs, (LD-II) 80 kV/40 – 41ref. mAs und (LD-III) 80 kV/15 – 17ref. mAs. CTDIvol und DLP wurden bestimmt. TRE wurden unter Verwendung eines optischen Navigationssystems für alle Scanner und Protokolle berechnet. Die Ergebnisse wurden mit SPSS statistisch ausgewertet und auf signifikante Unterschiede geprüft (p ≤ 0,05).

Ergebnisse: Der CTDIvol für Sensation Open/LightSpeed VCT/Definition flash ergab: (BP) 22,24 /32,48 /14,32 mGy; (LD-I) 4,61 /3,52 /1,62 mGy; (LD-II) 3,15 /2,01 /0,87 mGy; und (LD-III) na/0,76 /0,76 mGy. Die Differenz zwischen der BfS (Bundesamt für Strahlenschutz)-Referenz CTDIvol von 9 mGy und dem geringsten CTDIvol waren ungefähr 3-fach für Sensation Open und 12-fach für LightSpeed VCT und Definition Flash. 33 Registrierungen und 297 TRE-Messungen wurden durchgeführt. Für alle MSCT-Scanner zeigte sich kein signifikanter Unterschied der TRE zwischen den Low-Dose- und den Baseline-Protokollen.

Schlussfolgerung: Low-Dose-Protokolle in der modernen MSCT ermöglichen substanzielle Dosiseinsparungen ohne signifikanten Einfluss auf den TRE und sollten für die bildgesteuerte Chirurgie in Betracht gezogen werden.

 
  • References

  • 1 Ewers R, Schicho K, Truppe M et al. Computer-aided navigation in dental implantology: 7 years of clinical experience. J Oral Maxillofac Surg 2004; 62: 329-334
  • 2 Ewers R, Schicho K, Undt G et al. Basic research and 12 years of clinical experience in computer-assisted navigation technology: a review. Int J Oral Maxillofac Surg 2005; 34: 1-8
  • 3 Widmann G. Image-guided surgery and medical robotics in the cranial area. Biomed Imaging Interv J 2007; 3: e11
  • 4 Caversaccio M, Langlotz F, Nolte LP et al. Impact of a self-developed planning and self-constructed navigation system on skull base surgery: 10 years experience. Acta Otolaryngol 2007; 127: 403-407
  • 5 Caversaccio M, Nolte LP, Hausler R. Present state and future perspectives of computer aided surgery in the field of ENT and skull base. Acta Otorhinolaryngol Belg 2002; 56: 51-59
  • 6 Messmer P, Baumann B, Suhm N et al. Navigationsverfahren für die bildgesteuerte Therapie – ein Überblick (Navigation systems for image-guided therapy: A review). Fortschr Röntgenstr 2001; 173: 777-784
  • 7 Casap N, Wexler A, Tarazi E. Application of a surgical navigation system for implant surgery in a deficient alveolar ridge postexcision of an odontogenic myxoma. J Oral Maxillofac Surg 2005; 63: 982-988
  • 8 Eggers G, Haag C, Hassfeld S. Image-guided removal of foreign bodies. Br J Oral Maxillofac Surg 2005; 43: 404-409
  • 9 Klug C, Schicho K, Ploder O et al. Point-to-point computer-assisted navigation for precise transfer of planned zygoma osteotomies from the stereolithographic model into reality. J Oral Maxillofac Surg 2006; 64: 550-559
  • 10 Marmulla R, Niederdellmann H. Computer-assisted bone segment navigation. J Craniomaxillofac Surg 1998; 26: 347-359
  • 11 Nijmeh AD, Goodger NM, Hawkes D et al. Image-guided navigation in oral and maxillofacial surgery. Br J Oral Maxillofac Surg 2005; 43: 294-302
  • 12 Gunkel AR, Vogele M, Martin A et al. Computer-aided surgery in the petrous bone. Laryngoscope 1999; 109: 1793-1799
  • 13 Loubele M, Jacobs R, Maes F et al. Radiation dose vs. image quality for low-dose CT protocols of the head for maxillofacial surgery and oral implant planning. Radiat Prot Dosimetry 2005; 117: 211-216
  • 14 Nauer CB, Eichenberger A, Dubach P et al. CT radiation dose for computer-assisted endoscopic sinus surgery: dose survey and determination of dose-reduction limits. AJNR Am J Neuroradiol 2009; 30: 617-622
  • 15 Kral F, Riechelmann H, Freysinger W. Navigated surgery at the lateral skull base and registration and preoperative imagery: experimental results. Arch Otolaryngol Head Neck Surg 2011; 137: 144-150
  • 16 Ludlow JB, Ivanovic M. Comparative dosimetry of dental CBCT devices and 64-slice CT for oral and maxillofacial radiology. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics 2008; 106: 106-114
  • 17 Kyriakou Y, Kolditz D, Langner O et al. Digitale Volumentomografie (DVT) und Mehrschicht-Spiral-CT (MSCT): eine objektive Untersuchung von Dosis und Bildqualität (Digital volume tomography [DVT] and multislice spiral CT [MSCT]: an objective examination of dose and image quality). Fortschr Röntgenstr 2011; 183: 144-153
  • 18 Bauhs JA, Vrieze TJ, Primak AN et al. CT dosimetry: comparison of measurement techniques and devices. Radiographics 2008; 28: 245-253
  • 19 Fitzpatrick JM, West JB, Maurer CR Jr. Predicting error in rigid-body point-based registration. IEEE Trans Med Imaging 1998; 17: 694-702
  • 20 Widmann G, Bale RJ. Accuracy in computer-aided implant surgery – a review. The International journal of oral & maxillofacial implants 2006; 21: 305-313
  • 21 Widmann G, Stoffner R, Bale R. Errors and error management in image-guided craniomaxillofacial surgery. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics 2009; 107: 701-715
  • 22 Eggers G, Muhling J, Marmulla R. Image-to-patient registration techniques in head surgery. Int J Oral Maxillofac Surg 2006; 35: 1081-1095
  • 23 Loubele M, Bogaerts R, Van Dijck E et al. Comparison between effective radiation dose of CBCT and MSCT scanners for dentomaxillofacial applications. European journal of radiology 2009; 71: 461-468
  • 24 Quereshy FA, Savell TA, Palomo JM. Applications of cone beam computed tomography in the practice of oral and maxillofacial surgery. J Oral Maxillofac Surg 2008; 66: 791-796
  • 25 De Vos W, Casselman J, Swennen GR. Cone-beam computerized tomography (CBCT) imaging of the oral and maxillofacial region: a systematic review of the literature. Int J Oral Maxillofac Surg 2009; 38: 609-625
  • 26 Miracle AC, Mukherji SK. Conebeam CT of the head and neck, part 2: clinical applications. AJNR Am J Neuroradiol 2009; 30: 1285-1292
  • 27 Miracle AC, Mukherji SK. Conebeam CT of the head and neck, part 1: physical principles. AJNR Am J Neuroradiol 2009; 30: 1088-1095
  • 28 Okano T, Harata Y, Sugihara Y et al. Absorbed and effective doses from cone beam volumetric imaging for implant planning. Dentomaxillofac Radiol 2009; 38: 79-85
  • 29 Suomalainen A, Kiljunen T, Kaser Y et al. Dosimetry and image quality of four dental cone beam computed tomography scanners compared with multislice computed tomography scanners. Dentomaxillofac Radiol 2009; 38: 367-378
  • 30 Cohnen M, Kemper J, Mobes O et al. Radiation dose in dental radiology. European radiology 2002; 12: 634-637
  • 31 Bale RJ, Laimer I, Martin A et al. Frameless stereotactic cannulation of the foramen ovale for ablative treatment of trigeminal neuralgia. Neurosurgery 2006; 59: ONS394-ONS401 ; discussion ONS402
  • 32 Ortler M, Trinka E, Dobesberger J et al. Integration of multimodality imaging and surgical navigation in the management of patients with refractory epilepsy. A pilot study using a new minimally invasive reference and head-fixation system. Acta neurochirurgica 2010; 152: 365-378
  • 33 Ortler M, Unterhofer C, Bauer R et al. Flexibility of head positioning and head fixation provided by a novel system for non-invasive maxillary fixation and frameless stereotaxy: technical note. Minim Invasive Neurosurg 2009; 52: 144-148
  • 34 Widmann G, Eisner W, Kovacs P et al. Accuracy and clinical use of a novel aiming device for frameless stereotactic brain biopsy. Minim Invasive Neurosurg 2008; 51: 361-369
  • 35 Widmann G, Stoffner R, Schullian P et al. Comparison of the accuracy of invasive and noninvasive registration methods for image-guided oral implant surgery. The International journal of oral & maxillofacial implants 2010; 25: 491-498
  • 36 Widmann G, Widmann R, Widmann E et al. In vitro accuracy of a novel registration and targeting technique for image-guided template production. Clinical oral implants research 2005; 16: 502-508
  • 37 Widmann G, Stoffner R, Sieb M et al. Target registration and target positioning errors in computer-assisted neurosurgery: proposal for a standardized reporting of error assessment. Int J Med Robot 2009; 5: 355-365
  • 38 Dubach P, Eichenberger A, Caversaccio M. Radiation dose reduction in computer assisted navigation for functional endoscopic sinus surgery – cadaver head experiments and clinical implementation. Rhinology 2010; 48: 339-343
  • 39 Bale RJ, Burtscher J, Eisner W et al. Computer-assisted neurosurgery by using a noninvasive vacuum-affixed dental cast that acts as a reference base: another step toward a unified approach in the treatment of brain tumors. J Neurosurg 2000; 93: 208-213
  • 40 Widmann G, Widmann R, Widmann E et al. Use of a surgical navigation system for CT-guided template production. The International journal of oral & maxillofacial implants 2007; 22: 72-78
  • 41 Widmann G, Widmann R, Stoffner R et al. Multipurpose navigation system-based concept for surgical template production. J Oral Maxillofac Surg 2009; 67: 1113-1120
  • 42 Ortler M, Widmann G, Trinka E et al. Frameless stereotactic placement of foramen ovale electrodes in patients with drug-refractory temporal lobe epilepsy. Neurosurgery 2008; 62: ONS481-ONS488 ; discussion ONS488-ONS489
  • 43 Wagner A, Schicho K, Kainberger F et al. Quantification and clinical relevance of head motion during computed tomography. Investigative radiology 2003; 38: 733-741
  • 44 Kropil P, Cohnen M, Andersen K et al. Bildqualität in der Multidetektor-CT der Nasennebenhöhlen: Potenzial zur Dosisreduktion bei Anwendung eines adaptiven Nachverarbeitungsfilters (Image quality in multidetector CT of paranasal sinuses: potential of dose reduction using an adaptive post-processing filter). Fortschr Röntgenstr 2010; 182: 973-978
  • 45 Bulla S, Blanke P, Hassepass F et al. Reducing the radiation dose for low-dose CT of the paranasal sinuses using iterative reconstruction: Feasibility and image quality. European journal of radiology 2011;
  • 46 Widmann G, Pototschnig C, Bale R. Three-dimensionally navigated image-guided radiofrequency ablation in the head and neck. J Vasc Interv Radiol 2010; 21: 165-166
  • 47 Bale R, Lukas P. A new method for the placement of brachytherapy probes in paranasal sinus and nasopharynx neoplasms: regarding Kremer et al. IJROBP 43:995-1000; 1999. International journal of radiation oncology, biology, physics 1999; 45: 1089-1090
  • 48 Bale RJ, Freysinger W, Gunkel AR et al. Head and neck tumors: fractionated frameless stereotactic interstitial brachytherapy-initial experience. Radiology 2000; 214: 591-595
  • 49 Bale RJ, Vogele M, Freysinger W et al. Minimally invasive head holder to improve the performance of frameless stereotactic surgery. Laryngoscope 1997; 107: 373-377
  • 50 Bale R, Widmann G. Navigated CT-guided interventions. Minim Invasive Ther Allied Technol 2007; 16: 196-204