Subscribe to RSS
DOI: 10.1055/s-0031-1285870
Stellenwert der Catechol-O-Methyltransferase -Hemmung in der modernen Parkinson-Therapie
The Impact of Catechol-O-Methyltransferase Inhibition in Modern Treatment of Parkinson’s DiseasePublication History
Publication Date:
05 September 2011 (online)
Zusammenfassung
Die älteste, wirksamste und am besten verträgliche Substanz zur Behandlung von Parkinson-Patienten im Rahmen einer dopaminergen Stimulation ist Levodopa (LD). Die kurze Halbwertszeit von LD wird jedoch als Faktor in der Entstehung von motorischen Langzeitkomplikationen angesehen. Aus diesem Grund wird die Therapie mit LD erst spät begonnen. Die zunächst aufgrund pharmakokinetischer und tierexperimenteller Untersuchungen angenommene Verzögerung dieser motorischen Komplikationen unter Kombination aus LD mit Carbidopa (CD) und Entacapon (EN), einem Hemmer der Catechol-O-Methyltransferase (COMT), konnte anhand der STRIDE-PD Studie nicht bestätigt werden. Unter COMT-Hemmung konnte eine bessere Symptomkontrolle mit konsekutiv verbesserter Lebensqualität beobachtet werden. Das Auftreten von motorischen Fluktuationen war jedoch in dieser Gruppe früher beobachtet worden. Weitere kleine, standardisierte Studien beschreiben einen möglichen Einfluss der COMT-Hemmung auf Kognition und Muskelkraft, wobei ergänzende Untersuchungen hierzu ausstehen. Ferner wurden Anhaltspunkte für eine Reduktion der Homozystein-Synthese unter Kombination von COMT-Hemmung und LD-Gabe beschrieben. Neben der 3-fach Kombination LD/CD/EN stehen die COMT-Hemmer Tolcapon (TO) und EN zur Verfügung. Die vorliegenden Sicherheitsdaten von EN im Vergleich zu TO führen aktuell zum Vorzug von EN, auch wenn die Gabe von TO wahrscheinlich eine bessere Wirksamkeit bietet. Die aktuelle Indikation zur COMT-Hemmung unter LD Therapie bei M. Parkinson, bleibt in der Behandlung von „wearing off“ und anderen motorischen Komplikationen wie z. B. Fluktuationen. Neue therapeutische Ansätze bedingt durch ein besseres Verständnis des Enzyms und seiner Funktionen bleiben abzuwarten.
Abstract
Levodopa (LD) is the oldest, most efficacious and best-tolerated drug for dopaminergic substitution of patients with Parkinson’s disease (PD). Its main drawback is its short half-life, which supports the onset of motor complications in the longterm. Therefore therapy is started as late as possible. The at first expected delay of the onset of motor complications under the combination of LD with carbidopa (CD) and the catechol-O-methyltransferase (COMT) inhibitor entacapone (EN) on the basis of pharmacokinetic trials and experimental research to a certain extent, was proved to be wrong in the STRIDE-PD study. Although the control of symptoms and consecutive improved quality of life were better, motor complications under COMT inhibition occurred even earlier. Small studies show a possible influence on cognition and muscle strength, but further research is necessary. There is also an evidence for a reduction in homocysteine synthesis under the combination of COMT inhibition and LD administration. Besides, the triple combination of LD/CD/EN the COMT inhibitors EN and tolcapone (TO) is available for therapy. The safety data of EN compared with TO explain the current preference of EN, even if TO probably offers a better efficacy. The indication for additional COMT inhibition still remains in the treatment of motor complications like “wearing off” and other fluctuations as yet. New therapeutic approaches due to a better understanding of the enzyme and its features are still to be awaited.
-
Literatur
- 1 Fahn S, Oakes D, Shoulson I et al. Levodopa and the progression of Parkinson’s disease. N Engl J Med 2004; 351: 2498-2508
- 2 Birkmayer W, Hornykiewicz O. The L-3,4-dioxyphenylalanine (DOPA)-effect in Parkinson-akinesia. Wien Klin Wochenschr 1961; 73: 787-788
- 3 Cotzias GC, Papavasiliou PS, Gellene R. Modification of Parkinsonism – chronic treatment with L-dopa. N Engl J Med 1969; 280: 337-345
- 4 Müller T. Tolcapone in the management of Parkinson’s disease. Aging Health 2006; 2 (05) 709-720
- 5 Ruottinen HM, Rinne UK. COMT inhibition in the treatment of Parkinson’s disease. J Neurol 1998; 245: 25-34
- 6 Ceravolo R, Piccini P, Bailey DL et al. 18 F-dopa PET evidence that tolcapone acts as a central COMT inhibitor in Parkinson’s disease. Synapse 2002; 43: 201-207
- 7 Russ H, Müller T, Woitalla D et al. Detection of tolcapone in the cerebrospinal fluid of parkinsonian subjects. Naunyn Schmiedebergs Arch Pharmacol 1999; 360: 719-720
- 8 Hauser RA, Panisset G, Abbruzzese G et al. Improved symptom control with fixed dose levodopa/carbidopa/entacapone versus conventional levodopa/carbidopa as first-line levodopa therapy in early Parkinson’s disease patients. Mov Disord 2008; 23 (Suppl. 01) 208
- 9 Olanow CW, Kieburtz K, Stern M et al. Double-blind, placebo-controlled study of entacapone in levodopa-treated patients with stable Parkinson disease. Arch Neurol 2004; 61: 1563-1568
- 10 Müller T, Erdmann C, Muhlack S et al. Inhibition of catechol-O-methyltransferase contributes to more stable levodopa plasma levels. Mov Disord 2006; 21: 332-336
- 11 Olanow CW, Obeso JA. Pulsatile stimulation of dopamine receptors and levodopa-induced motor complications in Parkinson’s disease: implications for the early use of COMT inhibitors. Neurology 2000; 55: S72-S77
- 12 Müller T, Russ H. Levodopa, motor fluctuations and dyskinesia in Parkinson’s disease. Expert Opin Pharmacother 2006; 7: 1715-1730
- 13 Riederer P, Gerlach M, Müller T et al. Relating mode of action to clinical practice: dopaminergic agents in Parkinson’s disease. Parkinsonism Relat Disord 2007; 13: 466-479
- 14 Nyholm D. Pharmacokinetic optimisation in the treatment of Parkinson’s disease: an update. Clin Pharmacokinet 2006; 45: 109-136
- 15 Meiler B, Andrich J, Müller T. Rapid switch from oral antiparkinsonian combination drug therapy to duodenal levodopa infusion. Mov Disord 2008; 23: 145-146
- 16 Olanow CW, Stocchi F. COMT inhibitors in Parkinson’s disease: can they prevent and/or reverse levodopa-induced motor complications?. Neurology 2004; 62: S72-S81
- 17 Smith LA, Jackson MJ, AlBarghouthy G et al. Multiple small doses of levodopa plus entacapone produce continuous dopaminergic stimulation and reduce dyskinesia induction in MPTP-treated drug-naive primates. Mov Disord 2005; 20: 306-314
- 18 Stocchi F, Vacca L, Ruggieri S et al. Intermittent vs continuous levodopa administration in patients with advanced Parkinson disease: a clinical and pharmacokinetic study. Arch Neurol 2005; 62 (06) 905-910
- 19 Lee MS, Kim HS, Cho EK et al. COMT genotype and effectiveness of entacapone in patients with fluctuating Parkinson’s disease. Neurology 2002; 58: 564-567
- 20 Woitalla D, Karwasz R, Müller T et al. The activity of catechol-O-methyltransferase in parkinsonian patients with “on-off fluctuations”. J Neural Transm 2000; 107: 105-111
- 21 Stocchi F, Rascol O et al. Initiating levodopa/carbidopa therapy with and without entacapone in early Parkinson disease: the STRIDE-PD study. Annals of neurology 2010; 68: 18-27
- 22 Olanow CW, Kieburtz K et al. Double-blind, placebo-controlled study of entacapone in levodopa-treated patients with stable Parkinson disease. Arch Neurol 2004; 61: 1563-1568
- 23 Gordin A, Kaakkola S, Teravainen H. Clinical advantages of COMT inhibition with entacapone – a review. J Neural Transm 2004; 111: 1343-1363
- 24 Manca D, Cossu G et al. Reversible encephalopathy and axonal neuropathy in Parkinson’s disease during duodopa therapy. Mov Disord 2009; 24: 2293-2294
- 25 Muhlack S, Woitalla D, Welnic J et al. Chronic levodopa intake increases levodopa plasma bioavailability in patients with Parkinson’s disease. Neurosci Lett 2004; 363: 284-287
- 26 Müller T, Woitalla D, Saft C et al. Levodopa in plasma correlates with body weight of parkinsonian patients. Parkinsonism Relat Disord 2000; 6: 171-173
- 27 Müller T, Erdmann C, Bremen D et al. Impact of gastric emptying on levodopa pharmacokinetics in Parkinson disease patients. Clin Neuro-pharmacol 2006; 29: 61-67
- 28 Müller T, Woitalla D, Goetze O et al. Entacapone improves absorption of a coadministered salt in patients with Parkinson’s disease. Mov Disord 2008; 23: 1458-1461
- 29 Kortejarvi H, Urtti A, Yliperttula M. Pharmacokinetic simulation of biowaiver criteria: the effects of gastric emptying, dissolution, absorption and elimination rates. Eur J Pharm Sci 2007; 30: 155-166
- 30 Forsberg M, Lehtonen M, Heikkinen M et al. Pharmacokinetics and pharmacodynamics of entacapone and tolcapone after acute and repeated administration: a comparative study in the rat. J Pharmacol Exp Ther 2003; 304: 498-506
- 31 Forsberg MM, Huotari M, Savolainen J et al. The role of physicochemical properties of entacapone and tolcapone on their efficacy during local intrastriatal administration. Eur J Pharm Sci 2005; 24: 503-511
- 32 Goetze O, Wieczorek J, Müller T et al. Impaired gastric emptying of a solid test meal in patients with Parkinson’s disease using 13C-sodium octanoate breath test. Neurosci Lett 2005; 375: 170-173
- 33 Goetze O, Nikodem AB, Wiezcorek J et al. Predictors of gastric emptying in Parkinson’s disease. Neurogastroenterol Moti 2006; 18: 369-375
- 34 Lennernas H. Modeling gastrointestinal drug absorption requires more in vivo biopharmaceutical data: experience from in vivo dis-solution and permeability studies in humans. Curr Drug Metab 2007; 8: 645-657
- 35 Thwaites DT, Anderson CM. H+-coupled nutrient, micronutrient and drug transporters in the mammalian small intestine. Exp Physiol 2007; 92: 603-619
- 36 Mannisto PT. Catechol O-methyltransferase: characterization of the protein, its gene, and the preclinical pharmacology of COMT inhibitors. Adv Pharmacol 1998; 42: 324-328
- 37 Müller T, Erdmann C, Muhlack S et al. Pharmacokinetic behaviour of levodopa and 3-O-methyldopa after repeat administration of levodopa/carbidopa with and without entacapone in patients with Parkinson’s disease. J Neural Transm 2006; 113: 1441-1448
- 38 Müller T, Kolf K, Ander L et al. Catechol-O-methyltransferase inhibition improves levodopa-associated strength increase in patients with Parkinson disease. Clin Neuropharmacol 2008; 31: 134-140
- 39 Müller T, Ander L, Kolf K et al. Comparison of 200 mg retarded release levodopa/carbidopa – with 150 mg levodopa/carbidopa/entacapone application: pharmacokinetics and efficacy in patients with Parkinson’s disease. J Neural Transm 2007; 114: 1457-1462
- 40 Ringendahl H. Normierung der Motorischen Leistungsserie (MLS) für die Messung feinmotorischer Störungen beim Morbus Parkinson. Nervenarzt 1998; 69: 507-515
- 41 Ringendahl H. Factor structure, normative data and retest-reliability of a test of fine motor functions in patients with idiopathic Parkinson’s disease. Journal of Clinical and Experimental Neuropsychology 2002; 24: 491-502
- 42 Fabbrini G, Juncos JL, Mouradian MM et al. 3-O-methyldopa and motor fluctuations in Parkinson’s disease. Neurology 1987; 37: 856-859
- 43 Soares-da-Silva P, Parada A, Serrao P. The O-methylated derivative of L-DOPA, 3-O-methyl-L-DOPA, fails to inhibit neuronal and non-neuronal aromatic L-amino acid decarboxylase. Brain Res 2000; 863: 293-297
- 44 Arnsten AF, Li BM. Neurobiology of executive functions: catecholamine influences on prefrontal cortical functions. Biol Psychiatry 2005; 57: 1377-1384
- 45 Ben Shlomo Y, Marmot MG. Survival and cause of death in a cohort of patients with parkinsonism: possible clues to aetiology?. J Neurol Neurosurg Psychiatry 1995; 58: 293-299
- 46 Gorell JM, Johnson CC, Rybicki BA. Parkinson’s disease and its comorbid disorders: an analysis of Michigan mortality data, 1970 to 1990. Neurology 1994; 44: 1865-1868
- 47 Nakaso K, Yasui K, Kowa H et al. Hypertrophy of IMC of carotid artery in Parkinson’s disease is associated with L-DOPA, homocysteine, and MTHFR genotype. J Neurol Sci 2003; 207: 19-23
- 48 O’Suilleabhain PE, Sung V, Hernandez C et al. Elevated plasma homocysteine level in patients with Parkinson disease: motor, affective, and cognitive associations. Arch Neurol 2004; 61: 865-868
- 49 Ozer F, Meral H, Hanoglu L et al. Plasma homocysteine levels in patients treated with levodopa: motor and cognitive associations. Neurol Res 2006; 28: 853-858
- 50 Zoccolella S, Lamberti P, Iliceto G et al. Plasma homocysteine levels in L-dopa-treated Parkinson’s disease patients with cognitive dysfunctions. Clin Chem Lab Med 2005; 43: 1107-1110
- 51 Hassin-Baer S, Cohen O, Vakil E et al. Plasma homocysteine levels and Parkinson disease: disease progression, carotid intima-media thickness and neuropsychiatric complications. Clin Neuropharmacol 2006; 29: 305-311
- 52 O’Suilleabhain PE, Oberle R, Bartis C et al. Clinical course in Parkinson’s disease with elevated homocysteine. Parkinsonism Relat Disord 2006; 12: 103-107
- 53 Miller JW, Selhub J, Nadeau MR et al. Effect of L-dopa on plasma homocysteine in PD patients: relationship to B-vitamin status. Neurology 2003; 60: 1125-1129
- 54 Muller T, Woitalla D et al. Inhibition of catechol-O-methyltransferase modifies acute homocysteine rise during repeated levodopa application in patients with Parkinson’s disease. Naunyn-Schmiedeberg’s archives of pharmacology 2011; 383: 627-633
- 55 Müller T. Role of homocysteine in the treatment of Parkinson’s disease. Expert Rev Neurother 2008; 8: 957-967
- 56 Woitalla D, Kuhn W, Müller T. MTHFR C677T polymorphism, folic acid and hyperhomocysteinemia in levodopa treated patients with Parkinson’s disease. J Neural Transm Supp 2004; 68: 15-20
- 57 Müller T, Kuhn W. Tolcapone decreases plasmalevels of S-adenosyl-L-homocysteine and homocysteine in treated Parkinson’s disease patients. Eur J Clin Pharmacol 2006; 62: 447-450
- 58 Nissinen E, Nissinen H, Larjonmaa H et al. The COMT inhibitor, entacapone, reduces levodopa-induced elevations in plasma homocysteine in healthy adult rats. J Neural Transm 2005; 112: 1213-1221
- 59 Ostrem JL, Kang GA, Subramanian I et al. The effect of entacapone on homocysteine levels in Parkinson disease. Neurology 2005; 64: 1482
- 60 Zesiewicz TA, Wecker L, Sullivan KL et al. The controversy concerning plasma homocysteine in Parkinson disease patients treated with levodopa alone or with entacapone: effects of vitamin status. Clin Neuropharmacol 2006; 29: 106-111
- 61 Lamberti P, Zoccolella S, Iliceto G et al. Effects of levodopa and COMT inhibitors on plasma homocysteine in Parkinson’s disease patients. Mov Disord 2005; 20: 69-72
- 62 Valkovic P, Benetin J, Blazicek P et al. Reduced plasma homocysteine levels in levodopa/entacapone treated Parkinson patients. Parkinsonism Relat Disord 2005; 11: 253-256
- 63 Zoccolella S, Lamberti P, Armenise E et al. Plasma homocysteine levels in Parkinson’s disease: role of antiparkinsonian medications. Parkinsonism Relat Disord 2005; 11: 131-133
- 64 Isobe C, Murata T, Sato C et al. Increase of total homocysteine concentration in cerebrospinal fluid in patients with Alzheimer’s disease and Parkinson’s disease. Life Sci 2005; 77: 1836-1843
- 65 Lee ES, Chen H, Soliman KF et al. Effects of homocysteine on the dopaminergic system and behavior in rodents. Neurotoxicology 2005; 26: 361-371
- 66 Brooks DJ. Safety and tolerability of COMT inhibitors. Neurology 2004; 62: S39-S46
- 67 Durif F, Devaux I, Pere JJ et al. Efficacy and tolerability of entacapone as adjunctive therapy to levodopa in patients with Parkinson’s disease and end-of-dose deterioration in daily medical practice: an open, multicenter study. Eur Neurol 2001; 45: 111-118
- 68 Gershanik O, Emre M, Bernhard G et al. Efficacy and safety of levodopa with entacapone in Parkinson’s disease patients suboptimally controlled with levodopa alone, in daily clinical practice: an international, multicentre, open-label study. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27: 963-971
- 69 Illi A, Sundberg S, Ojala-Karlsson P et al. Simultaneous inhibition of catecholamine-O-methylation by entacapone and neuronal uptake by imipramine: lack of interactions. Eur J Clin Pharmacol 1996; 51: 273-276
- 70 Koller W, Guarnieri M, Hubble J et al. An open-label evaluation of the tolerability and safety of Stalevo (carbidopa, levodopa and entacapone) in Parkinson’s disease patients experiencing wearing-off. J Neural Transm 2005; 112: 221-230
- 71 Larsen JP, Worm-Petersen J, Siden A et al. The tolerability and efficacy of entacapone over 3 years in patients with Parkinson’s disease. Eur J Neurol 2003; 10: 37-146
- 72 Lyytinen J, Kaakkola S, Ahtila S et al. Simultaneous MAO-B and COMT inhibition in L-Dopa-treated patients with Parkinson’s disease. Mov Disord 1997; 12: 497-505
- 73 Martignoni E, Blandini F, Pacchetti C et al. COMT inhibition and safety. Funct Neurol 2001; 16: 135-140
- 74 Rinne UK, Larsen JP, Siden A et al. Entacapone enhances the response to levodopa in parkinsonian patients with motor fluctuations. Nomecomt Study Group. Neurology 1998; 51: 1309-1314
- 75 Zijlmans JC, Debilly B, Rascol O et al. Safety of entacapone and apomorphine coadministration in levodopa-treated Parkinson’s disease patients: pharmacokinetic and pharmacodynamic results of a multicenter, double-blind, placebo-controlled, cross-over study. Mov Disord 2004; 19: 1006-1011
- 76 Martignoni E, Cosentino M, Ferrari M et al. Two patients with COMT inhibitor-induced hepatic dysfunction and UGT1A9 genetic polymorphism. Neurology 2005; 65: 1820-1822
- 77 Grosset KA, Reid JL, Grosset DG. Medicine-taking behavior: implications of suboptimal compliance in Parkinson’s disease. Mov Disord 2005; 20: 1397-1404
- 78 Grosset KA, Grosset DG. Effect of educational intervention on medication timing in Parkinson’s disease: a randomized controlled trial. BMC Neurol 2007; 7: 20
- 79 Parkinson Study Group. Pramipexole vs levodopa as initial treatment for Parkinson disease: A randomized controlled trial. JAMA 2000; 284: 1931-1938
- 80 Rascol O, Brooks DJ, Korczyn AD et al. A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa. N Engl J Med 2000; 342: 1484-1491