Subscribe to RSS
DOI: 10.1055/s-0031-1286367
© Georg Thieme Verlag KG Stuttgart · New York
Die Anpresskraftkontrolle als Schlüssel zur sicheren strahlenfreien Katheterablation der AV-Knoten-Reentrytachykardie
Contact force control – the key to safe zero-fluoroscopy catheter ablation of atrioventricular nodal reentrant tachycardiaPublication History
eingereicht: 9.7.2011
akzeptiert: 14.9.2011
Publication Date:
20 September 2011 (online)

Zusammenfassung
Hintergrund: Die AV-Knoten-Reentrytachykardie (AVNRT) ist eine häufige supraventrikuläre Herzrhythmusstörung bei Kindern, Jugendlichen und jungen Erwachsenen. Die konventionelle Katheterablation ermöglicht praktisch immer eine endgültige Heilung, ist jedoch mit einer Röntgenstrahlen-Exposition und einem damit verbundenen Strahlenrisiko für Patient und Personal verbunden. Wir beschreiben eine sichere und einfache Technik für eine vollständig durchleuchtungsfreie Katheterablation.
Patienten und Methodik: Bei 12 Patienten mit AVNRT (medianes Alter 20 Jahre; 11–75 Jahre) wurde eine durchleuchtungsfreie Katheterablation angestrebt. Die Visualisierung kardiovaskulärer Strukturen erfolgte unter Zuhilfenahme eines 7F-Ablationskatheters mit integriertem Anpresskraftsensor und eines elektroanatomischen nicht-fluoroskopischen Navigationsystems.
Ergebnisse: Bei allen Patienten gelang eine erfolgreiche, komplikationslose und vollständig durchleuchtungsfreie Katheterablation der AVNRT. Im Nachbeobachtungszeitraum von im Median 6,2 Monaten (2,7–12,8 Monate) traten keine Tachykardie-Rezidive auf.
Folgerung: Die Verwendung eines Ablationskatheters mit Anpresskraftmessung in Verbindung mit einem nicht-fluoroskopischen Navigationssystem erlaubt eine durchleuchtungsfreie Katheterablation der AVNRT. Diese Technik ist einfach und sicher, sodass sie in den meisten elektrophysiologischen Laboren verwendet werden könnte.
Abstract
Background: Atrioventricular nodal reentrant tachycardia (AVNRT) is a frequent supraventricular tachycardia in children and young adults. Despite favourable success rates of catheter ablation, conventional fluoroscopic catheter guidance is associated with risks of low-dose ionizing radiation for the patient and the personnel. Here we describe a technique for zero-fluoroscopy catheter ablation using contact force technology.
Patients and methods: Zero-fluoroscopy catheter ablation was attempted in 12 patients with AVNRT (median age 20 years; range 11-75 years). An ablation catheter with integrated contact force sensor and a nonfluoroscopic electroanatomical mapping system was used for visualization of cardiovascular structures. Mean contact forces during mapping and ablation were restricted to an upper limit of 50 g to avoid cardiovascular injuries.
Results: Zero-fluoroscopy catheter ablation was performed successfully and uneventfully in all patients. There were no arrhythmia recurrences during a median follow-up of 6.2 months (range 2.7-12.8).
Conclusion: Zero-fluoroscopy catheter ablation of AVNRT is possible and appears simple yet safe, when a nonfluoroscopic electroanatomical mapping system is used in combination with an ablation catheter with integrated contact force sensor. The presented technique could thus be easily employed in most electrophysiological laboratories.
Schlüsselwörter
Katheterablation - Strahlenrisiko - Anpresskraftkontrolle - AV-Knoten-Reentrytachykardie
Keywords
Catheter ablation - radiation risk - contact force control - atrioventricular nodal reentrant tachycardia
Literatur
- 1 Alvarez M, Tercedor L, Almansa I. et al . Safety and feasibility of catheter ablation for atrioventricular nodal re-entrant tachycardia without fluoroscopic guidance. Heart Rhythm. 2009; 6 1714-1720
- 2 Berrington de Gonzales A, Darby S. Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries. Lancet. 2004; 363 345-351
-
3 Bundesamt für
Strahlenschutz .Umweltradioaktivität und Strahlenbelastung.
Jahresbericht 2009. Bonn: Bundesministerium für
Umwelt, Naturschutz und Reaktorsicherheit (BMU).
- 4 Calkins H, Niklason L, Sousa J. et al . Radiation exposure during radiofrequency catheter ablation of accessory atrioventricular connections. Circulation. 1991; 84 2376-2382
- 5 Calkins H, Yong P, Miller J M. et al . Catheter ablation of accessory pathways, atrioventricular nodal reentrant tachycardia, and the atrioventricular junction: final results of a prospective, multicenter clinical trial. The Atakr Multicenter Investigators Group. Circulation. 1999; 99 262-270
- 6 Casella M, Pelargonio G, Dello Russo A. et al . „Near-zero” fluoroscopic exposure in supraventricular arrhythmia ablation using the EnSite NavX mapping system: personal experience and review of the literature. J Interv Card Electrophysiol. 2011; 31 109-118
- 7 Chistiakov D A, Voronova N V, Chistiakov P A. Genetic variations in DNA repair genes, radiosensitivity to cancer and susceptibility to acute tissue reactions in radiotherapy-treated cancer patients. Acta Oncol. 2008; 47 809-824
- 8 Clark J, Bockoven J R, Lane J. et al . Use of three-dimensional catheter guidance and trans-esophageal echocardiography to eliminate fluoroscopy in catheter ablation of left-sided accessory pathways. Pacing Clin Electrophysiol. 2008; 31 283-289
- 9 Clay M A, Campbell R M, Strieper M. et al . Long-term risk of fatal malignancy following pediatric radiofrequency ablation. Am J Cardiol. 2008; 102 913-915
- 10 Drago F, Silvetti M S, Di Pino A. et al . Exclusion of fluoroscopy during ablation treatment of right accessory pathway in children. J Cardiovasc Electrophysiol. 2002; 13 778-782
- 11 Earley M J, Showkathali R, Alzetani M. et al . Radiofrequency ablation of arrhythmias guided by non-fluoroscopic catheter location: a prospective randomized trial. Eur Heart J. 2006; 27 1223-1229
- 12 Ferguson J D, Helms A, Mangrum J M. et al . Catheter ablation of atrial fibrillation without fluoroscopy using intracardiac echocardiography and electroanatomic mapping. Circ Arrhythm Electrophysiol. 2009; 2 611-619
- 13 Hindricks G, Willems S, Kautzner J. et al . Effect of electroanatomically guided versus conventional catheter ablation of typical atrial flutter on the fluoroscopy time and resource use: a prospective randomized multicenter study. J Cardiovasc Electrophysiol. 2009; 20 734-740
- 14 Kerst G, Weig H -J, Weretka S. et al . Contact Force Controlled Zero-Fluoroscopy Catheter Ablation of Right-Sided and Left-Atrial Arrhythmias. Cardiol Young. 2011; 21 S60
- 15 Kidouchi T, Suzuki S, Furui S. et al . Entrance Skin Dose during Radiofrequency Catheter Ablation for Tachyarrhythmia: A Multicenter Study. Pacing Clin Electrophysiol. 2011; 34 563-570
- 16 Kopelman H A, Prater S P, Tondato F. et al . Slow pathway catheter ablation of atrioventricular nodal re-entrant tachycardia guided by electroanatomical mapping: a randomized comparison to the conventional approach. Europace. 2003; 5 171-174
- 17 Kovoor P, Ricciardello M, Collins L. et al . Risk to patients from radiation associated with radiofrequency ablation for supraventricular tachycardia. Circulation. 1998; 98 1534-1540
- 18 Lindsay B D, Eichling J O, Ambos H D. et al . Radiation exposure to patients and medical personnel during radiofrequency catheter ablation for supraventricular tachycardia. Am J Cardiol. 1992; 70 218-223
- 19 Mettler Jr F A, Bhargavan M, Faulkner K. et al . Radiologic and nuclear medicine studies in the United States and worldwide: frequency, radiation dose, and comparison with other radiation sources – 1950 – 2007. Radiology. 2009; 253 520-531
- 20 National Research Council (U.S.) .Committee on the Biological Effects of Ionizing Radiations. Health effects of exposure to low levels of ionizing radiation: BEIR V. Washington, D.C.: National Academy Press; 1990 xiii: 421
- 21 National Research Council (U.S.) .Committee to Assess Health Risks from Exposure to Low Level of Ionizing Radiation. Health risks from exposure to low levels of ionizing radiation: BEIR VII Phase 2,. Washington, D.C: National Academy Press; 2006 xvi: 406
- 22 Papagiannis J, Tsoutsinos A, Kirvassilis G. et al . Nonfluoroscopic catheter navigation for radiofrequency catheter ablation of supraventricular tachycardia in children. Pacing Clin Electrophysiol. 2006; 29 971-978
- 23 Perisinakis K, Damilakis J, Theocharopoulos N. et al . Accurate assessment of patient effective radiation dose and associated detriment risk from radiofrequency catheter ablation procedures. Circulation. 2001; 104 58-62
- 24 Reddy V Y, Neuzil P, Kautzner J. et al . Low Catheter-Tissue Contact Force Results in Late PV Reconnection – Initial results from EFFICAS I. Heart Rhythm. 2011; 8 AB 12-1
-
25 Röntgenverordnung
in der Fassung der Bekanntmachung vom 30. April 2003. Bundesgesetzblatt,. Bonn: Bundesministerium für Umwelt, Naturschutz und
Reaktorsicherheit. 604-635
- 26 Rosenthal L S, Mahesh M, Beck T J. et al . Predictors of fluoroscopy time and estimated radiation exposure during radiofrequency catheter ablation procedures. Am J Cardiol. 1998; 82 451-458
- 27 Shah D, Schmidt B, Arentz T. et al . Catheter contact force during human right and Left atrial mapping in humans. Heart Rhythm. 2009; 6 PO04-25
- 28 Smith G, Clark J M. Elimination of fluoroscopy use in a pediatric electrophysiology laboratory utilizing three-dimensional mapping. Pacing Clin Electrophysiol. 2007; 30 510-518
- 29 Theocharopoulos N, Damilakis J, Perisinakis K. et al . Occupational exposure in the electrophysiology laboratory: quantifying and minimizing radiation burden. Br J Radiol. 2006; 79 644-651
- 30 Tucker K J, Curtis A B, Murphy J. et al . Transesophageal echocardiographic guidance of transseptal left heart catheterization during radiofrequency ablation of left-sided accessory pathways in humans. Pacing Clin Electrophysiol. 1996; 19 272-281
- 31 Tuzcu V. A nonfluoroscopic approach for electrophysiology and catheter ablation procedures using a three-dimensional navigation system. Pacing Clin Electrophysiol. 2007; 30 519-525
- 32 Vano E, Kleiman N J, Duran A. et al . Radiation cataract risk in interventional cardiology personnel. Radiat Res. 2010; 174 490-495
- 33 Zrenner B, Dong J, Schreieck J. et al . Transvenous cryoablation versus radiofrequency ablation of the slow pathway for the treatment of atrioventricular nodal re-entrant tachycardia: a prospective randomized pilot study. Eur Heart J. 2004; 25 2226-2231
PD Dr. med. Jürgen Schreieck
Klinik für Innere Medizin III
Universitätsklinik
Tübingen
Otfried-Müller-Straße
10
72076 Tübingen
Phone: 07071/29-80642
Fax: 07071/29-4550
Email: juergen.schreieck@med.uni-tuebingen.de