Subscribe to RSS
DOI: 10.1055/s-0031-1289546
Short Synthesis of (+)-1-Deoxynojirimycin via a Diastereoselective Reductive Coupling of Alkyne and α-Chiral Aldehyde
Publication History
Publication Date:
19 October 2011 (online)
Abstract
A short, highly diastereoselective synthesis of (+)-1-deoxynojirimycin from readily available l-isoserine with overall yield of 32.0% in eight steps is described. The key step includes a diastereoselective syn-coupling reaction of Cbz-protected (S)-isoserinal acetonide 6 and vinylzinc nucleophile, generated conveniently from a protected propargyl alcohol 7 by a hydrozirconation-transmetalation sequence. Significantly, not only does this simple flexible strategy provide a concise approach to (+)-1-deoxynojirimycin, but it also can readily be adopted for the synthesis of other stereoisomers of the 1-deoxynojirimycin family from l- or d-isoserine through different coupling conditions and stereoselective epoxidation of allylic alcohol 4 by the same procedures.
Key words
(+)-1-deoxynojirimycin - diastereoselective coupling - l-isoserine - diastereoselective synthesis - chelation-control transition state
- Supporting Information for this article is available online:
- Supporting Information
- 1
Inouye SE.Tsuruoka Y.Ito T.Niida T. Tetrahedron 1968, 24: 2125 - 2
Somsak L.Nagya V.Hadady Z.Docsa T.Gergely P. Curr. Pharm. Des. 2003, 9: 1177 - 3
Weiss M.Hettmer S.Smith P.Ladish S. Cancer Res. 2003, 63: 3654 - 4
Greimel P.Spreitz J.Stutz AE.Wrodnigg TM. Curr. Topics Med. Chem. 2003, 3: 513 - 5
Butters TD.Dwek RA.Platt FM. Chem. Rev. 2000, 100: 4683 - 6
Ficher PB.Collin M.Karlsson GB.Lames W.Butters TD.Davis SJ.Gordon S.Dwek RA.Platt FM. J. Virol. 1995, 69: 5791 - 7
Fischl MA.Resnick L.Cooms R.Kremer AB.Pottage JC.Fass RJ.Fife KH.Powderly WG.Collier AC.Aspinalli RL. J. Acquir. Immune Defic. 1994, 7: 139 - 8
Cox T.Lachmann R.Hollak C.Aerts J.Weely S.Hrebicek M.Platt F.Butters T.Dwek R.Moyses C.Gow I.Elstein D.Zimran A. Lancet 2000, 355: 1481 - For comprehensive reviews, see:
-
9a
Afarinkia K.Bahar A. Tetrahedron: Asymmetry 2005, 16: 1239 -
9b
Pearson MSM.Allaimat MM.Fargeas V.Lebreton J. Eur. J. Org. Chem. 2005, 2159 - For carbohydrate-based routes to DNJ and congeners, see:
-
9c
Asano N.Oseki K.Kizu H.Matsui K. J. Med. Chem. 1994, 37: 3701 -
9d
O’Brien JL.Tosin M.Murphy PV. Org. Lett. 2001, 3: 3353 -
9e
Spreidz JS.Stutz AE.Wrodnigg TM. Carbohydr. Res. 2002, 337: 183 ; and references cited therein - For non-carbohydrate-based routes to DNJ and congeners, see:
-
9f
Haukaas MH.O’Doherty GA. Org. Lett. 2001, 3: 401 -
9g
Ruiz M.Ojea V.Ruanova TM.Quintela JM. Tetrahedron: Asymmetry 2002, 13: 795 -
9h
Takahata H.Banba Y.Sasatani M.Nemoto H.Kato A.Adachi I. Tetrahedron 2004, 60: 8199 ; and literature cited therein -
9i
Guaragna A.D’Errico S.D’Alonzo D.Pedatella S.Palumbo G. Org. Lett. 2007, 9: 3473 -
9j
Bagal SK.Davies SG.Lee JA.Roberts PM.Russell AJ.Scott PM.Thomson JE. Org. Lett. 2010, 12: 136 -
9k
Palyam N.Majewski M. J. Org. Chem. 2009, 74: 4390 -
10a
Schmidt U.Meyer R.Leitenberger V.Stabler F.Lieberknecht A. Synthesis 1991, 409 -
10b
Schmidt U.Meyer R.Leitenberger V.Lieberknecht A.Griesser H. Chem. Commun. 1991, 275 - 11
Cram DJ.Kopecky KR. J. Am. Chem. Soc. 1959, 81: 2748 - For some examples of stereoselective additions to α-alkoxy aldehydes and ketones rationalized by chelation, see:
-
12a
Martin SF.Li W. J. Org. Chem. 1989, 54: 6129 -
12b
Amouroux R.Ejjiyar S.Chastrette M. Tetrahedron Lett. 1986, 27: 1035 -
12c
Asami M.Kimura R. Chem. Lett. 1985, 4: 1221 -
12d
Uenishi J.Tomozane H.Yamato M.
J. Chem. Soc., Chem. Commun. 1985, 717 -
13a
Cherest M.Felkin H.Prudent N. Tetrahedron Lett. 1968, 9: 2119 -
13b
Cherest M.Felkin H. Tetrahedron Lett. 1968, 2205 -
13c
Anh NT.Eisenstein OE. Nouv. J. Chim. 1977, 1: 61 -
13d
Anh NT. Top. Curr. Chem. 1980, 88: 145 - 14
Wipf P.Xu W. Tetrahedron Lett. 1994, 35: 5197 - 16
Murakami T.Furusawa K. Tetrahedron 2002, 58: 9257 -
18a
Gao Y.Hanson RM.Klunder JM.Ko SY.Masamune H.Sharpless KB. J. Am. Chem. Soc. 1987, 109: 5765 -
18b
Johnson RA.Sharpless KB. In Catalytic Asymmetric SynthesisOjima I. Wiley Publishers; New York: 1993. p.103-105 - 19
Setoi H.Takeno H.Hashimoto M. Tetrahedron Lett. 1985, 26: 4617 - 20
Lindstrom UM.Somfai P. Tetrahedron Lett. 1998, 39: 7173 -
21a
Fleet GWJ.Carpenter NM.Petursson S.Ramsden NG. Tetrahedron Lett. 1990, 31: 409 -
21b
Ermert P.Vasella A. Helv. Chim. Acta 1991, 74: 2043 -
21c
Ilida H.Yamazaki N.Kibayashi C. J. Org. Chem. 1987, 52: 3337
References and Notes
The structure of Garner’s aldehyde is shown in Figure [²] .
17Procedure for the Synthesis of 5: To a 250-mL flame-dried flask loaded with zirconocene chloride hydride (4.63 g, 18.0 mmol) under argon was added anhyd CH2Cl2 (35 mL). The resulting suspension was cooled to 0 ˚C after which 7 (3.06 g, 18.0 mmol) was added dropwise. The mixture was then stirred at r.t. until the suspension had fully dissolved forming a yellow solution (1 h). The solution was cooled to -30 ˚C after which diethylzinc (16.5 mL, 18.0 mmol, 1.1 M in toluene) was added dropwise. After 15 min of stirring aldehyde 6 (3.95 g, 15.0 mmol) was added as a CH2Cl2 solution (20 mL) via cannula. After 15 min of further stirring at -30 ˚C, the solution was allowed to warm to 0 ˚C and the orange mixture was stirred overnight. The reaction mixture was diluted with CH2Cl2 (80 mL) followed by addition of sodium potassium tartrate (15 g) and H2O (30 mL, added slowly). The resulting mixture was stirred for 45 min and filtered through a pad of celite. The phases were separated and the aqueous phase was extracted with CH2Cl2 (3 × 40 mL). The organic layer was dried over Na2SO4, and concentrated to give a crude product, which was chromatog-raphed on silica gel (10% EtOAc in cyclohexane) to give compound 5 (4.96 g, 76%) as a colorless oil; [α]D ²5 -12.1 (c = 2.0, CH2Cl2). ¹H NMR (400 MHz, DMSO): δ = 7.31-7.40 (m, 5 H), 5.81 (dt, J = 15.2, 4.0 Hz, 1 H), 5.65 (dd, J = 15.2, 5.2 Hz, 1 H), 5.16 (d, J = 4.8 Hz, 1 H), 5.01-5.10 (m, 2 H), 4.02-4.17 (m, 4 H), 3.46-3.53 (m, 1 H), 3.19 (t, J = 8.8 Hz, 1 H), 1.51 (s, 3 H), 1.44 (s, 3 H), 0.85 (s, 9 H), 0.02 (s, 6 H). ¹³C NMR (100 MHz, DMSO): δ = 152.0, 137.2, 131.4, 128.8, 128.7, 128.3, 128.0, 93.8, 77.2, 71.2, 66.1, 62.9, 46.7, 26.3, 26.2, 24.3, 18.4, -4.8. IR: 3436, 2929, 1710, 1411 cm-¹. LRMS (EI, 70 eV): m/z (%) = 420 (8) [M+ - Me], 91 (100). HRMS (EI): m/z [M+ - Me] calcd for C22H34NO5Si: 420.2206; found: 420.2201.