References and Notes
1
Inouye SE.
Tsuruoka Y.
Ito T.
Niida T.
Tetrahedron
1968,
24:
2125
2
Somsak L.
Nagya V.
Hadady Z.
Docsa T.
Gergely P.
Curr. Pharm.
Des.
2003,
9:
1177
3
Weiss M.
Hettmer S.
Smith P.
Ladish S.
Cancer Res.
2003,
63:
3654
4
Greimel P.
Spreitz J.
Stutz AE.
Wrodnigg TM.
Curr. Topics Med.
Chem.
2003,
3:
513
5
Butters TD.
Dwek RA.
Platt FM.
Chem.
Rev.
2000,
100:
4683
6
Ficher PB.
Collin M.
Karlsson GB.
Lames W.
Butters TD.
Davis SJ.
Gordon S.
Dwek RA.
Platt FM.
J.
Virol.
1995,
69:
5791
7
Fischl MA.
Resnick L.
Cooms R.
Kremer AB.
Pottage JC.
Fass RJ.
Fife KH.
Powderly WG.
Collier AC.
Aspinalli RL.
J. Acquir. Immune Defic.
1994,
7:
139
8
Cox T.
Lachmann R.
Hollak C.
Aerts J.
Weely S.
Hrebicek M.
Platt F.
Butters T.
Dwek R.
Moyses C.
Gow I.
Elstein D.
Zimran A.
Lancet
2000,
355:
1481
For comprehensive reviews, see:
9a
Afarinkia K.
Bahar A.
Tetrahedron: Asymmetry
2005,
16:
1239
9b
Pearson MSM.
Allaimat MM.
Fargeas V.
Lebreton J.
Eur.
J. Org. Chem.
2005,
2159
For carbohydrate-based routes to DNJ and congeners, see:
9c
Asano N.
Oseki K.
Kizu H.
Matsui K.
J. Med. Chem.
1994,
37:
3701
9d
O’Brien JL.
Tosin M.
Murphy PV.
Org. Lett.
2001,
3:
3353
9e
Spreidz JS.
Stutz AE.
Wrodnigg TM.
Carbohydr. Res.
2002,
337:
183 ; and references cited therein
For non-carbohydrate-based routes to DNJ and congeners,
see:
9f
Haukaas MH.
O’Doherty GA.
Org.
Lett.
2001,
3:
401
9g
Ruiz M.
Ojea V.
Ruanova TM.
Quintela JM.
Tetrahedron: Asymmetry
2002,
13:
795
9h
Takahata H.
Banba Y.
Sasatani M.
Nemoto H.
Kato A.
Adachi I.
Tetrahedron
2004,
60:
8199 ; and literature cited therein
9i
Guaragna A.
D’Errico S.
D’Alonzo D.
Pedatella S.
Palumbo G.
Org. Lett.
2007,
9:
3473
9j
Bagal SK.
Davies SG.
Lee JA.
Roberts PM.
Russell AJ.
Scott PM.
Thomson JE.
Org.
Lett.
2010,
12:
136
9k
Palyam N.
Majewski M.
J. Org. Chem.
2009,
74:
4390
10a
Schmidt U.
Meyer R.
Leitenberger V.
Stabler F.
Lieberknecht A.
Synthesis
1991,
409
10b
Schmidt U.
Meyer R.
Leitenberger V.
Lieberknecht A.
Griesser H.
Chem.
Commun.
1991,
275
11
Cram DJ.
Kopecky KR.
J. Am. Chem. Soc.
1959,
81:
2748
For some examples of stereoselective
additions to α-alkoxy aldehydes and ketones rationalized
by chelation, see:
12a
Martin SF.
Li W.
J. Org. Chem.
1989,
54:
6129
12b
Amouroux R.
Ejjiyar S.
Chastrette M.
Tetrahedron Lett.
1986,
27:
1035
12c
Asami M.
Kimura R.
Chem. Lett.
1985,
4:
1221
12d
Uenishi J.
Tomozane H.
Yamato M.
J.
Chem. Soc., Chem. Commun.
1985,
717
13a
Cherest M.
Felkin H.
Prudent N.
Tetrahedron Lett.
1968,
9:
2119
13b
Cherest M.
Felkin H.
Tetrahedron Lett.
1968,
2205
13c
Anh NT.
Eisenstein OE.
Nouv.
J. Chim.
1977,
1:
61
13d
Anh NT.
Top. Curr. Chem.
1980,
88:
145
14
Wipf P.
Xu W.
Tetrahedron Lett.
1994,
35:
5197
15 The structure of Garner’s
aldehyde is shown in Figure
[² ]
.
Figure 2
16
Murakami T.
Furusawa K.
Tetrahedron
2002,
58:
9257
17
Procedure for
the Synthesis of 5 : To a 250-mL flame-dried flask loaded with
zirconocene chloride hydride (4.63 g, 18.0 mmol) under argon was
added anhyd CH2 Cl2 (35 mL). The resulting
suspension was cooled to 0 ˚C after which 7 (3.06 g,
18.0 mmol) was added dropwise. The mixture was then stirred at r.t.
until the suspension had fully dissolved forming a yellow solution
(1 h). The solution was cooled to -30 ˚C after
which diethylzinc (16.5 mL, 18.0 mmol, 1.1 M in toluene) was added
dropwise. After 15 min of stirring aldehyde 6 (3.95
g, 15.0 mmol) was added as a CH2 Cl2 solution
(20 mL) via cannula. After 15 min of further stirring at -30 ˚C,
the solution was allowed to warm to 0 ˚C and the orange
mixture was stirred overnight. The reaction mixture was diluted
with CH2 Cl2 (80 mL) followed by addition of sodium
potassium tartrate (15 g) and H2 O (30 mL, added slowly).
The resulting mixture was stirred for 45 min and filtered through
a pad of celite. The phases were separated and the aqueous phase
was extracted with CH2 Cl2 (3 × 40 mL).
The organic layer was dried over Na2 SO4 , and concentrated
to give a crude product, which was chromatog-raphed on silica gel
(10% EtOAc in cyclohexane) to give compound 5 (4.96
g, 76%) as a colorless oil; [α]D
²5 -12.1
(c = 2.0, CH2 Cl2 ). ¹ H
NMR (400 MHz, DMSO): δ = 7.31-7.40 (m,
5 H), 5.81 (dt, J = 15.2, 4.0
Hz, 1 H), 5.65 (dd, J = 15.2, 5.2
Hz, 1 H), 5.16 (d, J = 4.8 Hz,
1 H), 5.01-5.10 (m, 2 H), 4.02-4.17 (m, 4 H),
3.46-3.53 (m, 1 H), 3.19 (t, J = 8.8
Hz, 1 H), 1.51 (s, 3 H), 1.44 (s, 3 H), 0.85 (s, 9 H), 0.02 (s,
6 H). ¹³ C NMR (100 MHz, DMSO): δ = 152.0,
137.2, 131.4, 128.8, 128.7, 128.3, 128.0, 93.8, 77.2, 71.2, 66.1,
62.9, 46.7, 26.3, 26.2, 24.3, 18.4, -4.8. IR: 3436, 2929,
1710, 1411 cm-¹ . LRMS (EI, 70 eV): m /z (%) = 420
(8) [M+ - Me], 91
(100). HRMS (EI): m /z [M+ - Me] calcd
for C22 H34 NO5 Si: 420.2206; found:
420.2201.
18a
Gao Y.
Hanson RM.
Klunder JM.
Ko SY.
Masamune H.
Sharpless KB.
J.
Am. Chem. Soc.
1987,
109:
5765
18b
Johnson RA.
Sharpless KB. In
Catalytic Asymmetric Synthesis
Ojima I.
Wiley Publishers;
New
York:
1993.
p.103-105
19
Setoi H.
Takeno H.
Hashimoto M.
Tetrahedron
Lett.
1985,
26:
4617
20
Lindstrom UM.
Somfai P.
Tetrahedron Lett.
1998,
39:
7173
21a
Fleet GWJ.
Carpenter NM.
Petursson S.
Ramsden NG.
Tetrahedron Lett.
1990,
31:
409
21b
Ermert P.
Vasella A.
Helv. Chim. Acta
1991,
74:
2043
21c
Ilida H.
Yamazaki N.
Kibayashi C.
J.
Org. Chem.
1987,
52:
3337