Synlett 2011(18): 2709-2712  
DOI: 10.1055/s-0031-1289546
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Short Synthesis of (+)-1-Deoxynojirimycin via a Diastereoselective Reductive Coupling of Alkyne and α-Chiral Aldehyde

Bing Zhou, Huanyu Tang, Huijin Feng, Yuanchao Li*
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhangjiang Hi-Tech Park, 555 Zu Chong Zhi Road, Shanghai 201203, P. R. of China
Fax: +86(21)50807288; e-Mail: ycli@mail.shcnc.ac.cn;
Further Information

Publication History

Received 24 July 2011
Publication Date:
19 October 2011 (online)

Abstract

A short, highly diastereoselective synthesis of (+)-1-deoxynojirimycin from readily available l-isoserine with overall yield of 32.0% in eight steps is described. The key step includes a diastereoselective syn-coupling reaction of Cbz-protected (S)-iso­serinal acetonide 6 and vinylzinc nucleophile, generated conveniently from a protected propargyl alcohol 7 by a hydrozirconation-transmetalation sequence. Significantly, not only does this simple flexible strategy provide a concise approach to (+)-1-deoxynojirimycin, but it also can readily be adopted for the synthesis of other stereoisomers of the 1-deoxynojirimycin family from l- or d-iso­serine through different coupling conditions and stereoselective ­epoxidation of allylic alcohol 4 by the same procedures.

    References and Notes

  • 1 Inouye SE. Tsuruoka Y. Ito T. Niida T. Tetrahedron  1968,  24:  2125 
  • 2 Somsak L. Nagya V. Hadady Z. Docsa T. Gergely P. Curr. Pharm. Des.  2003,  9:  1177 
  • 3 Weiss M. Hettmer S. Smith P. Ladish S. Cancer Res.  2003,  63:  3654 
  • 4 Greimel P. Spreitz J. Stutz AE. Wrodnigg TM. Curr. Topics Med. Chem.  2003,  3:  513 
  • 5 Butters TD. Dwek RA. Platt FM. Chem. Rev.  2000,  100:  4683 
  • 6 Ficher PB. Collin M. Karlsson GB. Lames W. Butters TD. Davis SJ. Gordon S. Dwek RA. Platt FM. J. Virol.  1995,  69:  5791 
  • 7 Fischl MA. Resnick L. Cooms R. Kremer AB. Pottage JC. Fass RJ. Fife KH. Powderly WG. Collier AC. Aspinalli RL. J. Acquir. Immune Defic.  1994,  7:  139 
  • 8 Cox T. Lachmann R. Hollak C. Aerts J. Weely S. Hrebicek M. Platt F. Butters T. Dwek R. Moyses C. Gow I. Elstein D. Zimran A. Lancet  2000,  355:  1481 
  • For comprehensive reviews, see:
  • 9a Afarinkia K. Bahar A. Tetrahedron: Asymmetry  2005,  16:  1239 
  • 9b Pearson MSM. Allaimat MM. Fargeas V. Lebreton J. Eur. J. Org. Chem.  2005,  2159 
  • For carbohydrate-based routes to DNJ and congeners, see:
  • 9c Asano N. Oseki K. Kizu H. Matsui K. J. Med. Chem.  1994,  37:  3701 
  • 9d O’Brien JL. Tosin M. Murphy PV. Org. Lett.  2001,  3:  3353 
  • 9e Spreidz JS. Stutz AE. Wrodnigg TM. Carbohydr. Res.  2002,  337:  183 ; and references cited therein
  • For non-carbohydrate-based routes to DNJ and congeners, see:
  • 9f Haukaas MH. O’Doherty GA. Org. Lett.  2001,  3:  401 
  • 9g Ruiz M. Ojea V. Ruanova TM. Quintela JM. Tetrahedron: Asymmetry  2002,  13:  795 
  • 9h Takahata H. Banba Y. Sasatani M. Nemoto H. Kato A. Adachi I. Tetrahedron  2004,  60:  8199 ; and literature cited therein
  • 9i Guaragna A. D’Errico S. D’Alonzo D. Pedatella S. Palumbo G. Org. Lett.  2007,  9:  3473 
  • 9j Bagal SK. Davies SG. Lee JA. Roberts PM. Russell AJ. Scott PM. Thomson JE. Org. Lett.  2010,  12:  136 
  • 9k Palyam N. Majewski M. J. Org. Chem.  2009,  74:  4390 
  • 10a Schmidt U. Meyer R. Leitenberger V. Stabler F. Lieberknecht A. Synthesis  1991,  409 
  • 10b Schmidt U. Meyer R. Leitenberger V. Lieberknecht A. Griesser H. Chem. Commun.  1991,  275 
  • 11 Cram DJ. Kopecky KR. J. Am. Chem. Soc.  1959,  81:  2748 
  • For some examples of stereoselective additions to α-alkoxy aldehydes and ketones rationalized by chelation, see:
  • 12a Martin SF. Li W. J. Org. Chem.  1989,  54:  6129 
  • 12b Amouroux R. Ejjiyar S. Chastrette M. Tetrahedron Lett.  1986,  27:  1035 
  • 12c Asami M. Kimura R. Chem. Lett.  1985,  4:  1221 
  • 12d Uenishi J. Tomozane H. Yamato M.
    J. Chem. Soc., Chem. Commun.  1985,  717 
  • 13a Cherest M. Felkin H. Prudent N. Tetrahedron Lett.  1968,  9:  2119 
  • 13b Cherest M. Felkin H. Tetrahedron Lett.  1968,  2205 
  • 13c Anh NT. Eisenstein OE. Nouv. J. Chim.  1977,  1:  61 
  • 13d Anh NT. Top. Curr. Chem.  1980,  88:  145 
  • 14 Wipf P. Xu W. Tetrahedron Lett.  1994,  35:  5197 
  • 16 Murakami T. Furusawa K. Tetrahedron  2002,  58:  9257 
  • 18a Gao Y. Hanson RM. Klunder JM. Ko SY. Masamune H. Sharpless KB. J. Am. Chem. Soc.  1987,  109:  5765 
  • 18b Johnson RA. Sharpless KB. In Catalytic Asymmetric Synthesis   Ojima I. Wiley Publishers; New York: 1993.  p.103-105  
  • 19 Setoi H. Takeno H. Hashimoto M. Tetrahedron Lett.  1985,  26:  4617 
  • 20 Lindstrom UM. Somfai P. Tetrahedron Lett.  1998,  39:  7173 
  • 21a Fleet GWJ. Carpenter NM. Petursson S. Ramsden NG. Tetrahedron Lett.  1990,  31:  409 
  • 21b Ermert P. Vasella A. Helv. Chim. Acta  1991,  74:  2043 
  • 21c Ilida H. Yamazaki N. Kibayashi C. J. Org. Chem.  1987,  52:  3337 
15

The structure of Garner’s aldehyde is shown in Figure  [²] .

Figure 2

17

Procedure for the Synthesis of 5: To a 250-mL flame-dried flask loaded with zirconocene chloride hydride (4.63 g, 18.0 mmol) under argon was added anhyd CH2Cl2 (35 mL). The resulting suspension was cooled to 0 ˚C after which 7 (3.06 g, 18.0 mmol) was added dropwise. The mixture was then stirred at r.t. until the suspension had fully dissolved forming a yellow solution (1 h). The solution was cooled to -30 ˚C after which diethylzinc (16.5 mL, 18.0 mmol, 1.1 M in toluene) was added dropwise. After 15 min of stirring aldehyde 6 (3.95 g, 15.0 mmol) was added as a CH2Cl2 solution (20 mL) via cannula. After 15 min of further stirring at -30 ˚C, the solution was allowed to warm to 0 ˚C and the orange mixture was stirred overnight. The reaction mixture was diluted with CH2Cl2 (80 mL) followed by addition of sodium potassium tartrate (15 g) and H2O (30 mL, added slowly). The resulting mixture was stirred for 45 min and filtered through a pad of celite. The phases were separated and the aqueous phase was extracted with CH2Cl2 (3 × 40 mL). The organic layer was dried over Na2SO4, and concentrated to give a crude product, which was chromatog-raphed on silica gel (10% EtOAc in cyclohexane) to give compound 5 (4.96 g, 76%) as a colorless oil; [α]D ²5 -12.1 (c = 2.0, CH2Cl2). ¹H NMR (400 MHz, DMSO): δ = 7.31-7.40 (m, 5 H), 5.81 (dt, J = 15.2, 4.0 Hz, 1 H), 5.65 (dd, J = 15.2, 5.2 Hz, 1 H), 5.16 (d, J = 4.8 Hz, 1 H), 5.01-5.10 (m, 2 H), 4.02-4.17 (m, 4 H), 3.46-3.53 (m, 1 H), 3.19 (t, J = 8.8 Hz, 1 H), 1.51 (s, 3 H), 1.44 (s, 3 H), 0.85 (s, 9 H), 0.02 (s, 6 H). ¹³C NMR (100 MHz, DMSO): δ = 152.0, 137.2, 131.4, 128.8, 128.7, 128.3, 128.0, 93.8, 77.2, 71.2, 66.1, 62.9, 46.7, 26.3, 26.2, 24.3, 18.4, -4.8. IR: 3436, 2929, 1710, 1411 cm. LRMS (EI, 70 eV): m/z (%) = 420 (8) [M+ - Me], 91 (100). HRMS (EI): m/z [M+ - Me] calcd for C22H34NO5Si: 420.2206; found: 420.2201.