Subscribe to RSS
DOI: 10.1055/s-0031-1289574
The Use of COP-OAc in the Catalyst-Controlled Syntheses of 1,3-Polyols
Publication History
Publication Date:
25 October 2011 (online)
Abstract
An iterative strategy to the 1,3-polyol motif is described. The use of the catalytic asymmetric Overman esterification for the construction of all stereogenic centers is broadly examined as are the sequences to extend the developing polyol chain. The iterative strategies are applied to the total syntheses of rugulactone and polyrhacitides A and B.
1 Introduction
2 Results and Discussion
2.1 Chain Elongation via RCM (Cycle A)
2.2 Total Synthesis of Rugulactone
2.3 Chain Elongation via Ando Olefination (Cycle B) and Total Syntheses of Polyrhacitides A and B
2.4 Useful Variants
3 Conclusions
Key words
polyols - palladium - catalysis - natural products - esters
- Supporting Information for this article is available online:
- Supporting Information
-
1a
Hertweck C. Angew. Chem. Int. Ed. 2009, 48: 4688 -
1b
O’Hagan D. Nat. Prod. Rep. 1995, 12: 1 -
1c
Staunton J.Weissman KJ. Nat. Prod. Rep. 2001, 18: 380 -
1d
O’Hagan D. The Polyketide Metabolites Ellis Horwood; Chichester: 1991. - For selected works, see:
-
2a
Walsh CT. Science 2004, 303: 1805 -
2b
Fischbach MA.Walsh CT. Chem. Rev. 2006, 106: 3468 -
2c
Staunton J. Angew. Chem. Int. Ed. 1991, 30: 1302 -
2d
Khosla C. J. Org. Chem. 2009, 74: 6416 -
2e
Hertweck C.Jarvis AP.Xiang L.Moore BS.Oldham NJ. ChemBioChem 2001, 2: 784 - For selected reviews on the synthesis of 1,3-polyols, see:
-
3a
Miller AK.Trauner D. Synlett 2006, 2295 -
3b
Schetter B.Mahrwald R. Angew. Chem. Int. Ed. 2006, 45: 7506 -
3c
Norcross RD.Paterson I. Chem. Rev. 1995, 95: 2041 -
3d
Rychnovsky SD. Chem. Rev. 1995, 95: 2021 -
3e
Bode SE.Wolberg M.Müller M. Synthesis 2006, 557 -
3f
Schneider C. Angew. Chem. Int. Ed. 1998, 37: 1375 -
3g
Oishi T.Nakata T. Synthesis 1990, 635 - For selected examples on substrate-controlled asymmetric induction, see:
-
4a
Shang S.Iwadare H.Macks DE.Ambrosini LM.Tan DS. Org. Lett. 2007, 9: 1895 -
4b
Körber K.Risch P.Brückner R. Synlett 2005, 2905 -
4c
Bode JW.Fraefel N.Muri D.Carreira EM. Angew. Chem. Int. Ed. 2001, 40: 2082 -
4d
Paterson I.Donghi M.Gerlach K. Angew. Chem. Int. Ed. 2000, 39: 3315 -
4e
Misske AM.Hoffmann HMR. Chem. Eur. J. 2000, 6: 3313 -
4f
Enders D.Hundertmark T. Tetrahedron Lett. 1999, 40: 4169 -
4g
Reggelin M.Brenig V.Welcker R. Tetrahedron Lett. 1998, 39: 4801 -
4h
Evans DA.Chapman KT.Carreira EM. J. Am. Chem. Soc. 1988, 110: 3560 - For recent examples on the synthesis of 1,3-diols, see inter alia:
-
5a
Herrmann AT.Saito T.Stivala CE.Tom J.Zakarian A. J. Am. Chem. Soc. 2010, 132: 5962 -
5b
Gnanadesikan V.Horiuchi Y.Ohshima T.Shibasaki M. J. Am. Chem. Soc. 2004, 126: 7782 -
5c
Davies HML.Hedley SJ.Bohall BR. J. Org. Chem. 2005, 70: 10737 -
5d
Rychnovsky SD.Powell NA. J. Org. Chem. 1997, 62: 6460 - 6 For a leading review, see:
Smith AB.Adams CM. Acc. Chem. Res. 2004, 37: 365 - 7
Brown HC.Jadhav PK. J. Am. Chem. Soc. 1983, 105: 2092 - For selected examples on iterative allylboronation in total synthesis, see:
-
8a
Nicolaou KC.Nold AL.Milburn RR.Schindler CS. Angew. Chem. Int. Ed. 2006, 45: 6527 -
8b
García-Fortanet J.Murga J.Carda M.Marco JA. Org. Lett. 2003, 5: 1447 -
8c
Fuwa H.Naito S.Goto T.Sasaki M. Angew. Chem. Int. Ed. 2008, 47: 4737 -
8d
Mitton-Fry MJ.Cullen AJ.Sammakia T. Angew. Chem. Int. Ed. 2007, 46: 1066 - For other examples on allylboronation, see:
-
9a
Schreiber SL.Goulet MT. J. Am. Chem. Soc. 1987, 109: 8120 -
9b
Paterson I.Wallace DJ.Gibson KR. Tetrahedron Lett. 1997, 38: 8911 -
9c
Smith AB.Minbiole KP.Verhoest PR.Schelhaas M. J. Am. Chem. Soc. 2001, 123: 10942 -
9d
Nicolaou KC.Nold AL.Milburn RR.Schindler CS.Kole KP.Yamaguchi J. J. Am. Chem. Soc. 2007, 129: 1760 -
9e
Nicolaou KC.Kim DW.Baati R.O’Brate A.Giannakakou P. Chem. Eur. J. 2003, 9: 6177 -
9f
Paterson I.Coster MJ.Chen DY.-K.Gibson KR.Wallace DJ. Org. Biomol. Chem. 2005, 3: 2410 -
9g
Dreher SD.Leighton JL. J. Am. Chem. Soc. 2001, 123: 341 -
9h
Barrett AGM.Braddock DC.de Koning PD.White AJP.Williams DJ. J. Org. Chem. 2000, 65: 375 -
9i
Schneider C.Rehfeuter M. Chem. Eur. J. 1999, 5: 2850 -
9j
Hoffmann RW.Stürmer R. Synlett 1990, 759 -
10a
García AB.Leßmann T.Umarye JD.Mamane V.Sommer S.Waldmann H. Chem. Commun. 2006, 3868 -
10b
Umarye JD.Leßmann T.García AB.Mamane V.Sommer S.Waldmann H. Chem. Eur. J. 2007, 13: 3305 - 11
Hafner A.Duthaler RO.Marti R.Rib G.Rothe-Streit P.Schwarzenbach F. J. Am. Chem. Soc. 1992, 114: 2321 - For selected examples on iterative allyltitanation, see:
-
12a
BouzBouz S.Cossy J. Org. Lett. 2000, 2: 501 -
12b
BouzBouz S.Cossy J. Org. Lett. 2004, 6: 3469 -
12c
Allais F.Louvel M.-C.Cossy J. Synlett 2007, 451 -
12d
Amans D.Bellosta V.Cossy J. Org. Lett. 2007, 9: 1453 -
12e
Ferrié L.Boulard L.Pradaux F.BouzBouz S.Reymond S.Capdevielle P.Cossy J. J. Org. Chem. 2008, 73: 1864 -
12f
Allais F.Cossy J. Org. Lett. 2006, 8: 3655 -
12g
BouzBouz S.Cossy J. Tetrahedron Lett. 2000, 41: 3363 - For further iterative asymmetric allylmetalation sequences, see inter alia:
-
13a
Guo H.Mortenson MS.O’Doherty GA. Org. Lett. 2008, 10: 3149 -
13b
Keck GE.Truong AP. Org. Lett. 2005, 7: 2153 -
13c
Keck GE.Savin KA.Weglarz MA.Cressman ENK. Tetrahedron Lett. 1996, 37: 3291 -
13d
Knochel P.Brieden W.Rozema MJ.Eisenberg C. Tetrahedron Lett. 1993, 34: 5881 - 14
Masamune S.Choy W.Peterson JS.Sita LS. Angew. Chem. Int. Ed. 1985, 24: 1 -
15a
Ma P.Martin S.Masamune S.Sharpless KB.Viti SM. J. Org. Chem. 1982, 47: 1378 -
15b
Katsuki T.Lee AWM.Ma P.Martin VS.Masamune S.Sharpless KB.Tuddenham D.Walker FJ. J. Org. Chem. 1982, 47: 1373 -
15c
Nicolaou KC.Daines RA.Uenishi J.Li WS.Papahatjis DP.Chakraborty TK. J. Am. Chem. Soc. 1988, 110: 4672 -
16a
Tosaki S.-y.Horiuchi Y.Nemoto T.Ohshima T.Shibasaki M. Chem. Eur. J. 2004, 10: 1527 -
16b
Gerber-Lemaire S.Vogel P. Eur. J. Org. Chem. 2003, 2959 -
16c
Burova SA.McDonald FE. J. Am. Chem. Soc. 2002, 124: 8188 - 17
Kondekar NB.Kumar P. Org. Lett. 2009, 11: 2611 - 18
Zhang Z.Aubry S.Kishi Y. Org. Lett. 2008, 10: 3077 - 19
Iwata M.Yazaki R.Suzuki Y.Kumagai N.Shibasaki M. J. Am. Chem. Soc. 2009, 131: 18244 -
20a
Kim IS.Ngai M.-Y.Krische MJ. J. Am. Chem. Soc. 2008, 130: 6340 -
20b
Kim IS.Ngai M.-Y.Krische MJ. J. Am. Chem. Soc. 2008, 130: 14891 -
21a
Lu Y.Kim IS.Hassan A.Del Valle DJ.Krische MJ. Angew. Chem. Int. Ed. 2009, 48: 5018 -
21b
Hassan A.Krische MJ. Org. Lett. 2009, 11: 3112 -
21c
Han SB.Hassan A.Kim IS.Krische MJ. J. Am. Chem. Soc. 2010, 132: 15559 - 22
Hartmann E.Oestreich M. Angew. Chem. Int. Ed. 2010, 49: 6195 -
23a
Albert BJ.Yamamoto H. Angew. Chem. Int. Ed. 2010, 49: 2747 -
23b
Albert BJ.Yamaoka Y.Yamamoto H. Angew. Chem. Int. Ed. 2011, 50: 2610 - 24
Binder JT.Kirsch SF. Chem. Commun. 2007, 4164 -
25a
Kirsch SF.Overman LE. J. Am. Chem. Soc. 2005, 127: 2866 -
25b
Cannon J.Kirsch SF.Overman LE.Sneddon H. J. Am. Chem. Soc. 2010, 132: 15192 -
25c
Cannon J.Kirsch SF.Overman LE. J. Am. Chem. Soc. 2010, 132: 15185 -
25d
Kirsch SF.Overman LE.White NS. Org. Lett. 2007, 9: 911 -
26a
Anderson CE.Kirsch SF.Overman LE.Richards CJ.Watson MP. Org. Synth. 2007, 84: 148 -
26b
Stevens AM.Richards CJ. Organometallics 1999, 18: 1346 -
26c
Kirsch SF.Overman LE. J. Org. Chem. 2005, 70: 2859 -
26d
Nomura H.Richards CJ. Chem. Eur. J. 2007, 13: 10216 -
26e
Kirsch SF.Overman LE.Watson MP. J. Org. Chem. 2004, 69: 8101 -
26f
Prasad RS.Anderson CE.Richards CJ.Overman LE. Organometallics 2005, 24: 77 - 27
Menz H.Kirsch SF. Org. Lett. 2009, 11: 5634 - 28
Jiang Z.-H.Yang Q.-X.Tanaka T.Kouno I. J. Nat. Prod. 2008, 71: 724 - 29
Meragelman TL.Scudiero DA.Davis RE.Staudt LM.McCloud TG.Cardellina JH.Shoemaker RH. J. Nat. Prod. 2009, 72: 336 - 30 For a leading review, see:
Deiters A.Martin SF. Chem. Rev. 2004, 104: 2199 - 31
Neises B.Steglich W. Angew. Chem. Int. Ed. 1978, 17: 522 - 32
Virolleaud M.-A.Piva O. Synlett 2004, 2087 - 33
Luche JL. J. Am. Chem. Soc. 1978, 100: 2226 - 35 The syn-configuration
of 10a was shown by conversion into polyrhacitide
A (ref. 43) and comparison of the analytical data. The syn-configuration of 10b was
shown by conversion into (3R,5R)-5-(tert-butyldimethylsiloxy)-3-(triethylsil-oxy)hexanal
and comparison of the analytical data with previously reported data:
Nicolaou KC.Nold AL.Milburn RR.Schindler CS.Cole KP.Yamaguchi J. J. Am. Chem. Soc. 2007, 129: 1760; cpd 22 -
36a
Mohapatra DK.Das PP.Reddy DS.Yadav JS. Tetrahedron Lett. 2009, 50: 5941 -
36b
Reddy DK.Shekhar V.Reddy TS.Reddy SP.Venkateswarlu Y. Tetrahedron: Asymmetry 2009, 20: 2315 -
36c
Allais F.Aouhansou M.Majira A.Ducrot PH. Synthesis 2010, 2787 -
36d
Böse D.Fernández E.Pietruszka J. J. Org. Chem. 2011, 76: 3463 -
36e
Cros F.Pelotier B.Piva O. Eur. J. Org. Chem. 2010, 5063 -
36f
Reddy DK.Shekhar V.Prabhakar P.Babu BC.Siddhardha B.Murthy USN.Venkateswarlu Y. Eur. J. Med. Chem. 2010, 45: 4657 -
36g
Reddipalli G.Venkataiah M.Fadnavis NW. Tetrahedron: Asymmetry 2010, 21: 320 - 37
Mancuso AJ.Huang S.-L.Swern D. J. Org. Chem. 1978, 43: 2480 - 39
Menz H. Ph.D. Thesis Technische Universität München; Germany: 2010. - 40
Ando K. J. Org. Chem. 1998, 63: 8411 - 41
Nelson DJ.Cooper PJ.Soundararajan R. J. Am. Chem. Soc. 1989, 111: 1414 - 42
Duschek A.Kirsch SF. Angew. Chem. Int. Ed. 2011, 50: 1524 - 43 Isolation:
Jiang Z.-H.Yang Q.-X.Tanaka T.Kouno I.
J. Nat. Prod. 2008, 71: 724 - For subsequent total syntheses, see:
-
44a
Mohapatra DK.Bhimireddy E.Krishnarao P.Das PP.Yadav JS. Org. Lett. 2011, 13: 744 -
44b
Ghosh S.Rao CN. Tetrahedron Lett. 2010, 51: 2052 -
44c
Yadav JS.Rajendar G.Ganganna B.Srihari P. Tetrahedron Lett. 2010, 51: 2154 - 45
White JD.Lincoln CM.Yang J.Martin WHC.Chan DB. J. Org. Chem. 2008, 73: 4139 - 46
Staudinger H.Meyer J. Helv. Chim. Acta 1919, 2: 635 - 47 For the use of related 4-(benzyloxy)butanoyl
esters as protective groups that can be removed by hydrogenolysis, see:
Clark MA.Ganem B. Tetrahedron Lett. 2000, 41: 9523 - 48
Haug TT.Kirsch SF. Org. Biomol. Chem. 2010, 8: 991 - 49
Mayer SF.Steinreiber A.Orru RVA.Faber K.
J. Org. Chem. 2002, 67: 9115
References
It should be mentioned that the use of triethylsilyl protecting groups does not show these deprotection issues, see: ref. 24.
38It has to be noted that the isolation of aldehyde 16 is somewhat troublesome, and, therefore, it is recommended to use it without further purification (see ref. 36d). Nevertheless, 16 can be isolated and stored at -20 ˚C over weeks without decomposition. See the experimental section and the Supporting Information for analytical data.