Synthesis 2012(3): 399-408  
DOI: 10.1055/s-0031-1289658
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of Allyl Acetates via Palladium-Catalysed Functionalisation of Allenes and 1,3-Dienes

Suren Husineca, Milos Petkovicb, Vladimir Savic*b, Milena Simicb
a Institute for Chemistry, Technology and Metallurgy (ICTM), Centre for Chemistry, P.O. Box 815, Njegoseva 12, 11000 Belgrade, Serbia
b University of Belgrade, Faculty of Pharmacy, Department of Organic Chemistry, Vojvode Stepe 450, 11221 Belgrade, Serbia
Fax: +381(11)3972 840; e-Mail: vladimir.savic@pharmacy.bg.ac.rs;
Further Information

Publication History

Received 18 October 2011
Publication Date:
29 December 2011 (online)

Abstract

π-Allylpalladium intermediates are known to participate efficiently in transformations involving nucleophilic species. Exploring these processes, we have developed a method for the preparation of allyl acetates via palladium-catalysed functionalisation of allenes and 1,3-dienes. Reactions of aryl iodides with either of these two classes of compounds and excess sodium acetate in the presence of Pd(OAc)2 and Ph3P as the catalytic system afforded the respective allyl acetates in moderate to good yields. The scope of this process has been investigated. The described method is an addition to the synthetic repertoire for the preparation of allyl acetates, and may be useful, in particular, for the synthesis of structurally complex compounds of this type.

    References

  • For recent reviews, see:
  • 1a Lu Z. Ma S. Angew. Chem. Int. Ed.  2008,  47:  258 
  • 1b Hyland C. Tetrahedron  2005,  61:  3457 
  • 1c Trost BM. Crawley ML. Chem. Rev.  2003,  103:  2921 
  • For some recent examples, see:
  • 1d He J. Tang S. Tang S. Liu J. Sun Y. Pan X. She X. Tetrahedron Lett.  2009,  50:  430 
  • 1e Lebeuf R. Hirano K. Glorius F. Org. Lett.  2008,  10:  4243 
  • 1f Kim IS. Han SB. Krische MJ. J. Am. Chem. Soc.  2009,  131:  2514 
  • 1g Denmark SE. Nguyen ST. Org. Lett.  2009,  11:  781 
  • 1h Gan K.-H. Jhong C.-J. Shue Y.-J. Yang S.-C. Tetrahedron  2008,  64:  9625 
  • 1i Kawatsura M. Ata F. Hirakawa T. Hayase S. Itoh T. Tetrahedron Lett.  2008,  49:  4873 
  • 2a Chai Y. Hong S. Lindsay HA. McFarland C. Mcintosh MC. Tetrahedron  2002,  58:  2905 
  • 2b Pereira S. Srebnik M. Aldrichimica Acta  1993,  26:  17 
  • 3a For a recent review on allyl alcohol preparation, see: Hodgson DM. Humphreys PG. In Science of Synthesis   Vol. 36:  Clayden JP. Georg Thieme Verlag; Stuttgart: 2007.  p.583 
  • 3b Serra-Muns A. Guerinot A. Reymond S. Cossy J. Chem. Commun.  2010,  46:  4178 
  • 3c Ueda M. Kawai S. Hayashi M. Naito T. Miyata O. J. Org. Chem.  2010,  75:  914 
  • 3d Jimenez-Nunez E. Claverie CK. Bour C. Cardenas DJ. Echavarren AM. Angew. Chem. Int. Ed.  2008,  47:  7892 
  • 3e Marion N. Gealageas R. Nolan SP. Org. Lett.  2007,  9:  2653 
  • For some recent examples, see:
  • 4a Jiang M. Wei Y. Shi M. J. Org. Chem.  2010,  75:  2528 
  • 4b Henderson WH. Check CT. Proust N. Stambuli JP. Org. Lett.  2010,  12:  824 
  • 4c Sheng S.-R. Huang X. J. Chem. Res., Synop.  2002,  184 
  • 5a Pilarski LT. Selander N. Boese D. Szabo KJ. Org. Lett.  2009,  11:  5518 
  • 5b Covell DJ. White MC. Angew. Chem. Int. Ed.  2008,  47:  6448 
  • 5c Chen MS. Prabagaran N. Labenz NA. White MC. J. Am. Chem. Soc.  2005,  127:  6970 
  • 5d Grennberg H. Bäckvall JE. Chem. Eur. J.  1998,  4:  1083 
  • 5e Yang H. Khan MA. Nicholas KM.
    J. Mol. Catal.  1994,  91:  319 
  • 6 Su Y. Jiao N. Org. Lett.  2009,  11:  2980 
  • 7 Bäckvall JE. Schink HE. Renko ZD. J. Org. Chem.  1990,  55:  826 ; and references cited therein
  • 8 Husinec S. Jadranin M. Markovic R. Petkovic M. Savic V. Todorovic N. Tetrahedron Lett.  2010,  51:  4066 
  • 9a Li Q. Jiang X. Fu C. Ma S. Org. Lett.  2011,  13:  466 
  • 9b Shu W. Yu Q. Ma S. Adv. Synth. Catal.  2009,  351:  2807 
  • 9c Bi H.-P. Liu X.-Y. Gou F.-R. Guo L.-N. Duan X.-H. Liang Y.-M. Org. Lett.  2007,  9:  3527 
  • 9d Dondas HA. Clique B. Cetinkaya B. Grigg R. Kilner C. Morris J. Sridharan V. Tetrahedron  2005,  61:  10652 
  • 9e Larock RC. Wang Y. Dong X. Yao T. Tetrahedron  2005,  61:  11427 
  • 9f Van Laren MW. Diederen JJH. Elsevier CJ. Adv. Synth. Catal.  2001,  343:  255 
  • 9g Zimmer R. Dinesh CU. Nandanan E. Khan FA. Chem. Rev.  2000,  100:  3067 
  • 9h Rutjes FPJT. Tjen KCMF. Wolf LB. Karstens WFJ. Schoemaker HE. Hiemstra H. Org. Lett.  1999,  1:  717 
  • 9i Anzai M. Toda A. Ohno H. Takemoto Y. Fujii N. Ibuka T. Tetrahedron Lett.  1999,  40:  7393 
  • 9j Shimizu I. Tsuji J. Chem. Lett.  1984,  233 
  • 10a Shin C. Oh Y. Cha JH. Pae AN. Choo H. Cho YS. Tetrahedron  2007,  63:  2182 
  • 10b Chakmavarty M. Swamy KCK. J. Org. Chem.  2006,  71:  9128 
  • 10c Zenner JM. Larock RC. J. Org. Chem.  1999,  64:  7312 
  • 10d Larock RC. He Y. Leong WW. Han X. Refvik MD. Zenner JM. J. Org. Chem.  1998,  63:  2154 
  • 11a Norsikian S. Chang C.-W. Curr. Org. Synth.  2009,  6:  264 ; and references cited therein
  • 11b Grigg R. Sridharan V. Xu L.-H. J. Chem. Soc., Chem. Commun.  1995,  1903 
  • 12a Nakamura H. Sugiishi T. Tanaka Y. Tetrahedron Lett.  2008,  49:  7230 
  • 12b Inamoto K. Yamamoto A. Ohsawa K. Hiroya K. Sakamoto T. Chem. Pharm. Bull.  2005,  53:  1502 
  • 12c Fuwa H. Sasaki M. Org. Biomol. Chem.  2007,  5:  2214 
  • 12d Grigg R. Sansano JM. Santhakumar V. Sridharan V. Thangavelanthum R. Thornton-Pett M. Wilson D. Tetrahedron  1997,  53:  11803 
  • 12e Grigg R. Sansano JM. Tetrahedron  1996,  52:  13441 
  • 12f Wei LL. Mulder JA. Xiong H. Zificsak CA. Douglas CJ. Hsung RP. Tetrahedron  2001,  57:  459 
  • 13 Bhat L. Steinig A. Appelbe R. de Meijere A. Eur. J. Org. Chem.  2001,  167