Synthesis 2012(3): 351-361  
DOI: 10.1055/s-0031-1289668
REVIEW
© Georg Thieme Verlag Stuttgart ˙ New York

Recent Developments in Palladium-Catalyzed Alkene Aminoarylation Reactions for the Synthesis of Nitrogen Heterocycles

Danielle M. Schultz, John P. Wolfe*
Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA
Fax: +1(734)6153790; e-Mail: jpwolfe@umich.edu;
Further Information

Publication History

Received 10 November 2011
Publication Date:
16 January 2012 (online)

Abstract

This short review describes new developments in palladium-catalyzed aminoarylation reactions between aryl halides and alkenes bearing pendant nitrogen nucleophiles. These transformations provide a novel and powerful method for accessing numerous three-, five-, six-, and seven-membered nitrogen heterocycles.

1 Introduction

2 Synthesis of Pyrrolidines via Palladium-Catalyzed Alkene Aminoarylation Reactions

2.1 Palladium(0)-Catalyzed Alkene Aminoarylation Reactions

2.1.1 Synthesis of trans-2,5-Disubstituted Pyrrolidines

2.1.2 Transformations of Aryl Chloride Electrophiles

2.1.3 Synthesis of Hexahydro-3H-pyrrolizin-3-ones

2.1.4 Enantioselective Synthesis of Monosubstituted Pyrrolidines

2.1.5 Asymmetric Total Synthesis of (+)-Aphanorphine

2.2 Palladium(II)-Catalyzed Arene C-H Activation/Alkene Aminoarylation

3 Synthesis of Other Five-Membered Heterocycles via Palladium-Catalyzed Alkene Aminoarylation

3.1 Synthesis of Pyrazolidines

3.2 Synthesis of Isoxazolidines

4 Aminoarylation Reactions for the Synthesis of Three-, Six-, and Seven-Membered Heterocycles

4.1 Synthesis of Aziridines

4.2 Synthesis of Morpholines

4.3 Synthesis of Saturated 1,4-Benzodiazepines

5 Palladium-Catalyzed Synthesis of Fused-, Bridged-, and Spiro-Polycyclic Heterocycles

5.1 Cascade Alkene Difunctionalization Reactions

5.2 Tandem N-Arylation/Alkene Aminoarylation Reactions

5.3 Intramolecular Alkene Aminoarylation Reactions

5.3.1 Synthesis of Tropane Derivatives

5.3.2 Synthesis of Spirooxindoles

5.3.3 Cascade C-H Functionalization/Intramolecular Alkene Aminoarylation Reactions

6 Conclusions

    References

  • For prior reviews, see:
  • 1a Wolfe JP. Synlett  2008,  2913 
  • 1b Wolfe JP. Eur. J. Org. Chem.  2007,  571 
  • 1c Kotov V. Scarborough CC. Stahl SS. Inorg. Chem.  2007,  46:  1910 
  • 1d McDonald RI. Liu G. Stahl SS. Chem. Rev.  2011,  111:  2981 
  • For Cu-catalyzed reactions, see:
  • 2a Chemler SR. Org. Biomol. Chem.  2009,  7:  3009 
  • 2b Chemler SR.
    J. Organomet. Chem.  2011,  696:  150 
  • For Au-catalyzed reactions, see:
  • 3a Zhang G. Cui L. Wang Y. Zhang L. J. Am. Chem. Soc.  2010,  132:  1474 
  • 3b Brenzovich WE. Benitez D. Lackner AD. Shunatona HP. Tkatchouk E. Goddard WA. Toste FD. Angew. Chem. Int. Ed.  2010,  49:  5519 
  • 3c Mankad NP. Toste FD. J. Am. Chem. Soc.  2010,  132:  12859 
  • 3d Tkatchouk E. Mankad NP. Benitez D. Goddard WA. Toste FD. J. Am. Chem. Soc.  2011,  133:  14293 
  • 4 Ney JE. Wolfe JP. Angew. Chem. Int. Ed.  2004,  43:  3605 
  • 5 Bertrand MB. Neukom JD. Wolfe JP. J. Org. Chem.  2008,  73:  8851 
  • The syn-migratory insertion of unactivated alkenes into Pd-N bonds had not been documented prior to our experiments in this area, see:
  • 6a Neukom JD. Perch NS. Wolfe JP. J. Am. Chem. Soc.  2010,  132:  6276 
  • 6b Hanley PS. Markovic D. Hartwig JF. J. Am. Chem. Soc.  2010,  132:  6302 
  • 6c Neukom JD. Perch NS. Wolfe JP. Organometallics  2011,  30:  1269 
  • 6d Hanley PS. Hartwig JF. J. Am. Chem. Soc.  2011,  133:  15661 
  • 7 Jepsen TH. Larsen M. Nielsen MB. Tetrahedron  2010,  66:  6133 
  • 8a Sprott KT. Corey EJ. Org. Lett.  2003,  5:  2465 
  • 8b Frisch K. Landa A. Saaby S. Jorgensen KA. Angew. Chem. Int. Ed.  2005,  44:  6058 
  • 9 Asano N. Nash RJ. Molyneux RJ. Fleet GWJ. Tetrahedron: Asymmetry  2000,  11:  1645 
  • 10 Lemen GS. Wolfe JP. Org. Lett.  2010,  12:  2322 
  • 11 Littke AF. Fu GC. Angew. Chem. Int. Ed.  2002,  41:  4176 
  • 12a Surry DS. Buchwald SL. Angew. Chem. Int. Ed.  2008,  47:  6338 
  • 12b Hartwig JF. Inorg. Chem.  2007,  46:  1936 
  • 13 Rosen BR. Ney JE. Wolfe JP. J. Org. Chem.  2010,  75:  2756 
  • 14 Walker SD. Barder TE. Martinelli JR. Buchwald SL. Angew. Chem. Int. Ed.  2004,  43:  1871 
  • 15 Bagnoli L. Cacchi S. Fabrizi G. Goggiamani A. Scarponi C. Tiecco M. J. Org. Chem.  2010,  75:  2134 
  • 16 Cole DC. Lennox WJ. Lombardi S. Ellingboe JW. Bernotas RC. Tawa GJ. Mazandarani H. Smith DL. Zhang G. Coupet J. Schechter LE. J. Med. Chem.  2005,  48:  353 
  • 17 Mai DN. Wolfe JP. J. Am. Chem. Soc.  2010,  132:  12157 
  • 18 Guo X.-X. Xie J.-H. Hou G.-H. Shi W.-J. Wang L.-X. Zhou Q.-L. Tetrahedron: Asymmetry  2004,  15:  2231 
  • 19 For an analogous synthesis of (±)-tylophorine, see: Rossiter LM. Slater ML. Giessert RE. Sakwa SA. Herr RJ. J. Org. Chem.  2009,  74:  9554 
  • 20 Mai DN. Rosen BR. Wolfe JP. Org. Lett.  2011,  13:  2932 
  • 21 Gulavita N. Hori A. Shimizu Y. Laszlo P. Clardy J. Tetrahedron Lett.  1988,  29:  4381 
  • 22a Ma Z. Hu H. Xiong W. Zhai H. Tetrahedron  2007,  63:  7523 
  • 22b Zhai H. Luo S. Ye C. Ma Y. J. Org. Chem.  2003,  68:  8268 
  • 24 Fuchs JR. Funk RL. Org. Lett.  2001,  3:  3923 
  • 25a Rosewall CF. Sibbald PA. Liskin DV. Michael FE. J. Am. Chem. Soc.  2009,  131:  9488 
  • 25b Sibbald PA. Rosewall CF. Swartz RD. Michael FE. J. Am. Chem. Soc.  2009,  131:  15945 
  • 26 Giampietro NC. Wolfe JP. J. Am. Chem. Soc.  2008,  130:  12907 
  • 27 Lemen GS. Giampietro NC. Hay MB. Wolfe JP. J. Org. Chem.  2009,  74:  2533 
  • 28 Hayashi S. Yorimitsu H. Oshima K. Angew. Chem. Int. Ed.  2009,  48:  7224 
  • 29 Wijtmans R. Vink MKS. Shoemaker HE. van Delft FL. Blaauw RH. Rutjes FPJT. Synthesis  2004,  641 
  • 30 Leathen ML. Rosen BR. Wolfe JP. J. Org. Chem.  2009,  74:  5107 
  • 31a Nakhla JS. Wolfe JP. Org. Lett.  2007,  9:  3279 
  • 31b Nakhla JS. Schultz DM. Wolfe JP. Tetrahedron  2009,  65:  6549 
  • 32a Ellman JA. Acc. Chem. Res.  1996,  29:  132 
  • 32b Horton DA. Bourne GT. Smythe ML. Chem. Rev.  2003,  103:  893 
  • 33 Neukom JD. Aquino AS. Wolfe JP. Org. Lett.  2011,  13:  2196 
  • 34 Schultz DM. Wolfe JP. Org. Lett.  2010,  12:  1028 
  • 35 The migration of palladium from one sp³-hybridized carbon to another has only been observed on one prior occasion. See: Heumann A. Bäckvall JE. Angew. Chem., Int. Ed. Engl.  1985,  24:  207 
  • 36 Lemen GS. Wolfe JP. Org. Lett.  2011,  13:  3218 
  • For the synthesis of N-aryl-2-benzylpyrrolidines and indolines via cascade N-arylation/alkene aminoarylation, see:
  • 37a Lira R. Wolfe JP. J. Am. Chem. Soc.  2004,  126:  13906 
  • 37b Yang Q. Ney JE. Wolfe JP. Org. Lett.  2005,  7:  2575 
  • 38 Schultz DM. Wolfe JP. Org. Lett.  2011,  13:  2962 
  • 39 Jaegli S. Erb W. Retailleau P. Vors J.-P. Neuville L. Zhu J. Chem. Eur. J.  2010,  16:  5863 
  • 40 Jaegli S. Dufour J. Wei H.-L. Piou T. Duan X.-H. Vors J.-P. Neuville L. Zhu J. Org. Lett.  2010,  12:  4498 
  • 41 Yip K.-T. Yang D. Org. Lett.  2011,  13:  2134 
23

Pyrrolidine-forming reactions of substrates bearing homo­-allylic substituents proceed with low diastereoselectivity. See references 1a,b and 7.