References and Notes
1a
Cootz T.
Guard D.
Schelkley W.
Tensfeldt T.
Foulds G.
Kellogg M.
Stam J.
Campbell B.
Jasys J.
Kelbaugh P.
Volkmann R.
Hamanaka E.
J. Antibiot.
1990,
43:
422
1b
Hamilton-Miller JMT.
Pharmacotherapy
2003,
23:
1497
1c
Volkmann RA.
O’Neill BT.
Strategies
Tactics Org. Synth.
1991,
3:
495
2a Jasys VJ. inventors; PCT Int. Appl. WO9011284A1, 19901004.
; Chem. Abstr. 1990, 114, 81420
2b Hamanaka ES. inventors; Eur. Pat. Appl. EP130025A1.
; Chem. Abstr. 1985, 103, 22370
2c O’Neill BT, and Phillips D. inventors; Eur.
Pat. Appl. EP365223A2.
; Chem. Abstr. 1990, 113, 191056
2d
Phillips D.
O’Neill BT.
Tetrahedron
Lett.
1990,
31:
3291
2e Brighty KE, Marfat A, McLeod DG, and O’Donnell JP. inventors; PCT
Int. Appl. WO2008001212A2, 20080103.
; Chem. Abstr. 2008, 148, 100428
3
Nelson JD.
Proceedings
of the 240th ACS National Meeting
Boston / MA / USA:
August
22-26:
2010. American Chemical Society: Washington
DC; ORGN-847
4 The prodrug ester undergoes in vivo
hydrolysis to release sulopenem as the active drug substance.
5a
Foulds G.
Knirsch AK.
Lazar JD.
Tensfeldt TG.
Gerber N.
Antimicrob.
Agents Chemother.
1991,
35:
665
5b
Brass EP.
Pharm. Rev.
2002,
54:
589
6 Hamanaka ES. inventors; Eur.
Pat. Appl. EP130025A1, 19850102.
; Chem. Abstr. 1985, 103, 22370
7
Volkmann RA.
Kelbaugh PR.
Nason DM.
Jasys
VJ.
J.
Org. Chem.
1992,
57:
4352
8
Urban FJ.
Breitenbach R.
Vincent LA.
J.
Org. Chem.
1990,
55:
3670
9a
Sample TE.
Hatch LF.
Org. Synth.
1970,
50:
43
9b
Rybacek J.
Zavada J.
Holy P.
Synthesis
2008,
3615
9c
Brazdova B.
Zhang N.
Samoshin VV.
Guo X.
Chem. Commun.
2008,
39:
4774
10a
Ko C.-W.
Chou T.-S.
J.
Org. Chem.
1998,
63:
4645
10b
Morgan BS.
Roberts SM.
Evans P.
Tetrahedron Lett.
2006,
47:
5273
10c
Sasson R.
Rozen S.
J. Fluorine Chem.
2006,
127:
962
11a
Loev B.
J. Org. Chem.
1961,
26:
4394
11b
Subramanian T.
Meenakshi S.
Dange SY.
Bhat SV.
Synth. Commun.
1997,
27:
2557
11c
Xue F.
Seto CT.
Bioorg. Med. Chem.
2006,
14:
8467
12a
Leffler MT.
Krueger WD.
J. Am. Chem. Soc.
1949,
71:
370
12b
Tolstikov GA.
Rozentsvet OA.
Kunakova RV.
Novitskaya NN.
Bull.
Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.)
1983,
32:
529 ; Izv. Akad. Nauk SSSR, Ser.
Khim. 1983, 589
13a
Yamada S.
Ohsawa H.
Suzuki T.
Takayama H.
Chem.
Lett.
1983,
12:
1003
13b
Tso H.-H.
Chou T.
Lee W.-C.
Chem.
Commun.
1987,
934
14a
Hieber G.
Hanack M.
Wurst K.
Strahle J.
Chem.
Ber.
1991,
124:
1597
14b
Chou T.
Tso H.-H.
Lin LC.
J.
Org. Chem.
1986,
51:
1000
15a
Walling C.
Pearson MS.
J.
Am. Chem. Soc.
1964,
86:
2262
15b
Deslongchamps P.
Guay D.
Can. J. Chem.
1985,
63:
2757
15c
Dingwall JG.
Tuck B.
J. Chem. Soc.,
Perkin Trans. 1.
1986,
2081
15d
Motesharei K.
Myles DC.
J. Am. Chem.
Soc.
1997,
119:
6674
15e
Bakuzis P.
Bakuzis MLF.
J. Org.
Chem.
1985,
50:
2569
16 A 1-liter three-necked round-bottomed
flask equipped with mechanical stirring, heating mantle, glycol
condenser, and bleach scrubber under nitrogen atmosphere was charged with
butadiene sulfone (15.0 g, 127 mmol), toluene, (12 mL/g),
and 2,2′-azobisisobutyronitrile (10.43 g, 63.5 mmol). Thioacetic
acid (21.77 g, 286 mmol) was added via syringe. The mixture was
then heated at 100 ˚C for 15 h. A sample by HPLC verified
the reaction was done. The toluene was removed on a rotovap (30
mmHg, 65 ˚C). The resulting dark red viscous oil was dissolved
in EtOAc (100 mL) and washed successively with sat. NaHCO3 solution
(100 mL; pH check of aqueous layer showed 8.0) and sat. NaCl solution
(100 mL). The organic phase was then stirred with MgSO4 powder
(75 g) for 1 h. Darco G-60 activated carbon (15 g) was added to
the slurry and stirred for additional 1 h. The slurry was filtered
over silica gel 60 (100 g), and washed with EtOAc (4 × 100
mL). The combined filtrate and wash were concentrated to an oil,
then diluted with EtOAc (15 mL) and hexanes (75 mL). After stirring
for 30 min, the product started to crystallize. The resulting slurry
was stirred for 1 h at 20-25 ˚C, filtered and
air dried to give rac-8 (7.42 g,
35.2 mmol, 30%); mp 68.2-70.6 ˚C. ¹H
NMR (400 MHz, CDCl3): δ = 4.09-4.18
(m, 1 H), 3.53 (dd, J = 8.0,
14.0 Hz, 1 H), 3.20-3.33 (m, 1 H), 3.05-3.14 (m,
1 H), 2.96 (dd, J = 8.0, 14.0
Hz, 1 H), 2.54-2.63 (m, 1 H), 2.36 (s, 3 H), 2.15-2.
27 (m, 1 H). ¹³C NMR (100 MHz, CDCl3): δ = 193.8,
56.1, 51.5, 37.4, 30.5, 29.1. MS: m/z = 195.08 [M + H]+,
152.04. HRMS: m/z [M + H]+ calcd
for C6H11O3S2: 195.0150;
found: 195.0137.
For preparative chiral chromatography
reviews, see:
17a
Subramanian G.
Chiral Separation Techniques
Wiley-VCH;
Weinheim;
2007:
585.
17b
Xie Y.
Koo Y.-M.
Wang N.-HL.
Biotechnol.
Bioproc. Eng.
2001,
6:
363
17c
Francotte ER.
J. Chromatogr., A.
2001,
906:
379
18 2.48 g (90% yield) of (S)-8 was obtained
from 5.5 g of rac-8 in
a typical laboratory chiral chromatographic separation.
19 The scale-up was performed in a contract
research organization facility, where the process safety evaluation was
completed. Due to the inherent risk of scaling up radical chemistry,
it is recommended that process safety be thoroughly examined when
considering running this reaction.