References and Notes
1
Trofimov BA.
Shainyna BA.
In The
Chemistry of Sulfur-Containing Functional Groups
Patai S.
Rappoport Z.
John
Wiley and Sons;
Chichester:
1993.
p.659
2
Liu J.
Lam JVY.
Jim CKW.
Ng JCY.
Shi J.
Su H.
Yeung KF.
Hong Y.
Faisal M.
Yu Y.
Wong KS.
Tang BZ.
Macromolecules
2011,
44:
68
3a
Sabarre A.
Love J.
Org.
Lett.
2008,
10:
3941
3b
Wenkert E.
Shepard ME.
Mcphail AT.
J. Chem. Soc., Chem. Commun.
1986,
1390
3c
Wenkert E.
Fernandes JB.
Michelotti EL.
Swindell CS.
Synthesis
1983,
701
3d
Fiandanese V.
Harchese G.
Naso F.
Ronsini L.
Chem. Commun.
1982,
647
3e
Venkert E.
Ferreira TW.
Michelotti EL.
Chem. Commun.
1979,
637
3f
Okamura H.
Miura M.
Takei H.
Tetrahedron Lett.
1979,
43
4a
Muraoka N.
Mineno M.
Itami K.
Yoshida J.
J.
Org. Chem.
2005,
70:
6933
4b
Itami K.
Mineno M.
Muraoka N.
Yoshida J.
J. Am. Chem. Soc.
2004,
126:
11778
4c
Mauleon P.
Nunez AA.
Alonso J.
Carretero JC.
Chem. Eur. J.
2003,
9:
1511
4d
Trost BM.
Tanigawa Y.
J. Am.
Chem. Soc.
1979,
101:
4743
5a
Singh PP.
Yadav AK.
Ita H.
Junjappa H.
J.
Org. Chem.
2009,
74:
5496
5b
Serra S.
Fugnti C.
Moro A.
J.
Org. Chem.
2001,
66:
7883
5c
McDoald FE.
Burova SA.
Huffman LG.
Synthesis
2000,
970
5d
Yamazaki S.
Synth.
Org. Chem.
2000,
58:
50
5e
Adrio J.
Carretero JC.
J. Am. Chem. Soc.
1999,
121:
7411
5f
Bruckner R.
Huisgen R.
Tetrahedron Lett.
1990,
31:
2561
5g
Singleton D.
Church KM.
J. Org. Chem.
1990,
55:
4780
5h
Gupta RB.
Franck RW.
Onan KD.
Soll
CE.
J.
Org. Chem.
1989,
54:
1097
6a
Trofimov BA.
Gusarova NK.
Malysheva SF.
Ivanova NI.
Sukhov BG.
Belogorlova NA.
Kuimov VA.
Synthesis
2002,
2207
6b
Trofimov BA.
Gusarova NK.
Malysheva SF.
Sukhov BG.
Belogorlova NA.
Kuimov VA.
Al’pert ML.
Sulfur
Lett.
2003,
26:
63
7
Chen MS.
White MC.
J. Am. Chem. Soc.
2004,
126:
1346
8
Fernandez F.
Gomez M.
Jansat S.
Muller G.
Martin E.
Flores-Santos I.
Organometallics
2005,
24:
3946
9
Trost BM.
Lavoic AC.
J. Am. Chem. Soc.
1983,
105:
5075
10
Miller RD.
Hassing R.
Tetrahedron Lett.
1985,
26:
2395
11a
Hunter R.
Kaschula CH.
Parker IM.
Caira MR.
Richards P.
Travis S.
Taute F.
Qwebani T.
Bioorg. Med. Chem. Lett.
2008,
18:
5277
11b
Strebhardt K.
Ullrich A.
Nat. Rev. Cancer
2006,
6:
321
11c
Gumireddy K.
Baker SJ.
Cosenza SC.
Premila J.
Kang AD.
Robell KA.
Proc.
Natl. Acad. Sci. U.S.A.
2005,
102:
1992
11d
Muraoka N.
Mineno M.
Itami K.
Yoshida J.
J. Org. Chem.
2005,
70:
6933
11e
Sharma VM.
Adi Seshu KV.
Sekhar VC.
Madan S.
Vishnu B.
Babu PA.
Krishna CV.
Sreenu J.
Krishna VR.
Venkateswarlu A.
Rajagopal S.
Ajaykumar R.
Kumar TS.
Bioorg. Med. Chem.
Lett.
2004,
14:
67
11f
Sader HS.
Johnson DM.
Jones RN.
Antimicrob. Agents Chemother.
2004,
48:
53
11g
Johannesson P.
Lindeberg G.
Johansson A.
Nikiforovich G.
Godoll A.
Synnergren B.
Le Greves M.
Nyberg F.
Karlen A.
Hallberg A.
J. Med. Chem.
2002,
45:
1767
12a
Beletskaya IP.
Ananikov VP.
Chem. Rev.
2011,
111:
1596
12b
Ananikov VP.
Zalesskiy SS.
Beletskaya IP.
Curr. Org. Chem.
2011,
8:
2
12c
Bichler P.
Love J.
Top Organomet. Chem.
2010,
31:
39
12d
Ide DM.
Eastlund MP.
Jupe CL.
Stockland RA.
Curr.
Org. Chem.
2008,
1270
12e
Beller M.
Seayad J.
Tillack A.
Jiao H.
Angew. Chem. Int. Ed.
2004,
43:
3392
12f
Kuniyasu H.
Kurosawa H.
Chem. Eur. J.
2002,
8:
2661
12g
Ogawa A.
J.
Organomet. Chem.
2000,
611:
463
12h
Kondo T.
Mitsudo T.
Chem. Rev.
2000,
3209
12i
Ogawa A.
Ikeda T.
Kimura K.
Hirao T.
J. Am. Chem. Soc.
1999,
121:
5108
12j
Weiss C.
Marks TJ.
J. Am. Chem. Soc.
2010,
132:
10533
12k
Yang J.
Sabarre A.
Fraser LR.
Patrick BO.
Love J.
J.
Org. Chem.
2009,
74:
182
12l
Kuniyasu H.
Ogawa A.
Sato K.-I.
Ryu I.
Kambe N.
Sonoda N.
J. Am. Chem. Soc.
1992,
114:
5902
12m
Yang Y.
Rioux RM.
Chem. Commun.
2011,
47:
6557
12n
Ranjit S.
Duan Z.
Zhang P.
Liu X.
Org. Lett.
2010,
12:
4134
12o
Corma A.
Gonzalez-Arellano C.
Iglesias M.
Sanchez F.
Appl. Catal., A
2010,
375:
49
12p
Field LD.
Messerle BA.
Vuong KQ.
Turner P.
Dalton
Trans.
2009,
3599
12q
Shoai S.
Bichler P.
Kang B.
Buckler H.
Love JA.
Organometallics
2007,
26:
5778
12r
Burling S.
Field LD.
Messerle B.
Vuong KQ.
Turner P.
Dalton
Trans.
2003,
4181
12s
Singer H.
Wilkinson G.
J. Chem. Soc. A
1968,
2516
13a
Weiss CJ.
Marks TJ.
Organometallics
2010,
29:
6308
13b
Weiss CJ.
Marks TJ.
Dalton
Trans.
2010,
6576
13c
Eisen NS.
Top. Organomet. Chem.
2010,
31:
157
13d
Weiss CJ.
Wobser SD.
Marks TJ.
J. Am. Chem. Soc.
2009,
131:
2062
14a
O’Donnal JS.
Singh S.
Metcalf TA.
Schwan AL.
Eur. Org. Chem.
2009,
547
14b
Perin G.
Mendes SR.
Silva MS.
Lenardo E.
Jacob RG.
Santos PC.
Synth. Commun.
2006,
36:
2587
14c
Kondoh A.
Takami K.
Yorimitsu H.
Oshima K.
J. Org. Chem.
2005,
70:
6468
14d
Perin G.
Jacob R.
Azambuja F.
Botteselb G.
Siqueira G.
Freitag R.
Lenardo E.
Tetrahedron
Lett.
2005,
46:
1679
14e
Medel R.
Monterde MI.
Plumet J.
Rojas JK.
J. Org. Chem.
2005,
70:
735
14f
Arjona O.
Medel R.
Rojas J.
Costa A.
Vilarrasa J.
Tetrahedron Lett.
2003,
44:
6369
14g
Trofimov BA.
Curr. Org. Chem.
2002,
6:
11212
14h
Carson JF.
Boggs LE.
J.
Org. Chem.
1967,
32:
673
14i
Truce W.
Heine R.
J. Am. Chem. Soc.
1957,
79:
5311
14j
Truce WE.
Simms JA.
J.
Am. Chem. Soc.
1956,
78:
2756
15a
Minozzi M.
Monesi A.
Nanni D.
Spagnolo P.
Marchetti N.
Massi A.
J.
Org. Chem.
2011,
76:
450
15b
Taniguchi T.
Fujii T.
Idota A.
Ishibashi H.
Org. Lett.
2009,
11:
3298
15c
Sato A.
Yorimitsu H.
Oshima K.
Synlett
2009,
28
15d
Bencivenni G.
Lanza T.
Leardini R.
Nanni D.
Spagnolo P.
Zanardi G.
Org. Lett.
2008,
10:
1127
15e
Fernandez M.
Alonso R.
J. Org. Chem.
2006,
71:
6767
15f
Beaufils F.
Denes F.
Renaud P.
Org.
Lett.
2004,
6:
2563
15g
Fristad GK.
Jiang T.
Fioroni G.
Tetrahedron: Asymmetry
2003,
14:
2853
15h
Yorimitsu H.
Wakabayashi K.
Shinokubo H.
Oshima K.
Bull. Chem. Soc. Jpn.
2001,
74:
1963
15i
Nguyen VH.
Nishino H.
Kajikawa S.
Kurosawa K.
Tetrahedron
1998,
54:
11445
15j
Benati L.
Capella L.
Montevecchi PC.
Spaglono P.
J. Org. Chem.
1995,
60:
7941
15k
Yoshida J.
Nakatani S.
Isoe S.
J.
Org. Chem.
1993,
58:
4855
15l
Benati L.
Montevecchi PS.
Spagnolo PJ.
J. Chem. Soc., Perkin Trans. 1
1991,
2103
15m
Griesbaum K.
Angew.
Chem.
1970,
82:
285
16a
Kabir MS.
Lorenz M.
Van Linn ML.
Namjoshi
OA.
Ara S.
Cook J.
J.
Org. Chem.
2010,
75:
3626
16b
Taniguchi N.
Tetrahedron
2009,
65:
2782
16c
Trostyanskaya IG.
Maslova EN.
Kazankova MA.
Beletskaya IP.
Russ. J. Org. Chem.
2008,
44:
32
16d
Carril M.
SanMartin R.
Dominquez E.
Tellitu I.
Chem. Eur. J.
2007,
13:
5100
16e
Beletskaya IP.
Cheprakov AV.
Coord.
Chem. Rev.
2004,
248:
2337
16f
Bates CG.
Saejueng P.
Doherty MQ.
Venkataraman D.
Org.
Lett.
2004,
6:
5005
16g
Kwong
FY.
Buchwald SL.
Org.
Lett.
2002,
4:
3517
17
Demchuk DV.
Lutsenko AI.
Troyanskii EI.
Nikishin GI.
Izv.
AN SSSR, Ser. Khim.
1990,
2801
18
Silveira CC.
Perin G.
Branga AL.
Jacob RG.
Tetrahedron
1999,
55:
7421
19
Guerrero PG.
Dabdoub MJ.
Marques FA.
Wosch CL.
Baroni ACM.
Ferreira AG.
Synth. Commun.
2008,
38:
4379
20
Fitt JJ.
Gschwend HW.
J. Org. Chem.
1979,
44:
303
21
Ritter RH.
Cohen T.
J. Am. Chem. Soc.
1986,
108:
3718
22a
Murahashi S.-I.
Yamamura M.
Yanagisawa K.
Mita N.
Kondo K.
J. Org. Chem. Soc.
1979,
44:
2408
22b
Huang X.
Zhong P.
Guo W.-R.
Org.
Prep. Proced. Int.
1999,
31:
201
23a
Chu C.-M.
Tu Z.
Wu P.
Wang C.-C.
Liu J.-T.
Kuo C.-W.
Shin Y.-H.
Yao C.-F.
Tetrahedron
2009,
65:
3878
23b
Benati L.
Capella L.
Montevecchi PC.
Spagnolo
PJ.
J. Org.
Chem.
1994,
59:
2818
24 The products 3a,
[¹²r]
[¹6f]
[¹9]
3c,
[²0]
3d,
[¹²r]
[²¹]
3b,
[¹5l]
[²²a]
[b]
3e,
[¹²q]
[¹4c]
[²³a]
[b]
3f,
[²³a]
3g,h,
[¹8]
3i,
[¹²i]
[¹5b]
[l]
[¹6b]
[¹7]
3k,
[¹5b]
[³¹]
were identified
according to published data. The Z/E isomeric ratio for 3i and 3k was determined by ¹H
NMR and ¹³C NMR spectroscopy.
25
Typical Experimental
Procedure for the CuI-Catalyzed Hydrothiolation of the Alkynes
To
a mixture of phenylacetylene (1a, 0.102
g, 1 mmol), CuI (0.006 g, 3 mol%) in DMF (0.5 mL) was added
HexSH (2c, 0.118 g, 1 mmol) under an argon
atmosphere, the mixture was stirred at 80 ˚C for
2 h and then evaporated under vacuum. The resulting oil was diluted
with CHCl3 and filtered. The filtrate was concentrated
and purified by column chromatography on silica gel (EtOAc-hexane,
5:95) to afford hexyl-(2-styryl)sulfide (3f,
[²³a]
0.198 g,
90%; Z/E = 15:1 by
NMR) as a colorless oil. ¹H NMR (400 MHz, CDCl3): δ (Z-isomer) = 7.46-7.15
(m, 5 H, Ph), 6,39 (d,
³
J
HH = 10.5 Hz, 1
H, PhCH=), 6.20 (d, ³
J
HH = 10.5
Hz, 1 H, =CHS), 2.72 (t, ³
J
HH = 7.4 Hz, 2 H,
CH2S), 1.65 (m, 2 H), 1.38 (m, 2 H), 1.28 (m, 4 H), 0.87
(t, 3 H, CH3); δ (E-isomer) = 7.34-7.16
(m, 5 H, Ph), 6.72 (d, ³
J
HH = 16.0
Hz, 1 H, PhCH=), 6.46 (d, ³
J
HH = 16.0 Hz, 1
H, =CHS), 2.79 (t,
³
J
HH = 7.4 Hz, 2 H,
CH2S), 1.69 (m, 2 H), 1.43 (m, 2 H), 1.31 (m, 4 H), 0.90
(t, 3 H, CH3). ¹³C NMR (100.6
MHz, CDCl3): δ (Z-isomer) = 136.94,
128.45, 128.02, 127.57, 126.55, 125.59, 35.80, 31.27, 30.10, 28.15,
22.43, 13.93; δ (E-isomer) = 136.98,
128.48, 128.05, 127.60, 126.35, 125.05, 32.52, 31,25, 29.23, 28.36,
22.41, 13.96.
26
(
E
)-
N
,
N
-Dimethyl-3-(phenylthio)-2-propenylamine (3c)
[²0]
¹H
NMR (400 MHz, CDCl3): δ = 7.22-7.50
(m, Ph), 6.39 (dt, ³
J
HH = 16.0
Hz, J
HH = 1.4 Hz,
1 H, =CHS), 5.87 (dt,
³
J
HH = 16.0 Hz, J
HH = 1.4 Hz, 1 H, =CHC),
3.23 (d, J
HH = 8.0 Hz,
2 H, CH2N), 2.36 (s, 6 H, CH3N). ¹³C
NMR (100.6 MHz, CDCl3): δ = 135.57,
128.93, 128.84, 128.11, 126.55, 126.36, 57.10, 44.91. Anal. Calcd
for C11H15NS: C, 68.37; H, 7.81; N, 7.25.
Found: C, 68.25; H, 8.00; N, 7.38.
27
3-(Phenylthio)prop-2-en-1-ol
(3d,
E/Z
= 5:1)
[¹²r]
[²¹]
E
-Isomer
¹H
NMR (400 MHz, CDCl3): δ = 7.20-7.49
(m, 5 H, Ph), 6.43 (dt, ³
J
HH = 14.0
Hz, J
HH = 1.4 Hz,
1 H, =CHS), 5.93 (dt, ³
J
HH = 1.4 Hz, 1 H, =CHC),
4.16 (d, ²
J
HH = 7.15
Hz, 2 H, H2CO), 2.15 (br s, 1 H, OH). ¹³C
NMR (100.6 MHz, CDCl3): δ = 132.99,
130.93, 129.96, 128.98, 127.36, 127.05, 63.07.
Z
-Isomer
¹H
NMR (400 MHz, CDCl3): δ = 7.20-7.49
(m, 5 H, Ph), 6.33 (dt, ³
J
HH = 8.0
Hz, J
HH = 1.2 Hz,
1 H, =CHS), 5.90-5.96 (m, 1 H, =CHC),
4.34 (d, ²
J
HH = 7.12
Hz, 2 H, H2CO), 2.13 (br s, 1 H, OH). ¹³C
NMR (100.6 MHz, CDCl3): δ = 136.88, 129.58,
129.04, 128.98, 127.36, 126.91, 59.65. Anal. Calcd. for C9H10OS:
C, 65.06; H, 6.02. Found: C, 65.26; H, 6.19.
28
(
Z
)-3-(2-Styrylthio)propanethiol
(3g)
[¹8]
¹H NMR (400 MHz, CDCI3): δ = 7.19-7.48
(m 5 H, Ph), 6.44 (dd, ³
J
HH = 10.8
Hz, 1 H, =CHPh), 6.17 (dd, ³
J
HH = 10.8 Hz, 1
H, =CHS), 2.84-2.93 (m, 2 H, =CSCH2),
2.57-2.63 (m, 2 H, H2CSH), 1.82-1.97
(m, 2 H, CCH2C), 1.34 (t,
³
J
HH = 7.0 Hz, 1 H,
SH). ¹³C NMR (100.6 MHz, CDCI3): δ = 137.20,
129.16, 128.66, 128.25, 126.91 126.74, 41.61, 30.60, 25.64.
29
2-Benzyl-1,3-dithiane
(3h)
[¹7]
¹H NMR (400 MHz, CDCI3): δ = 7.25-7.31
(m, 5 H, Ph), 4.25 (t, 1 H, SCH2S), 2.94 (d, 2 H, H2CPh),
2.73 (m, 4 H, SCH2C), 2.05 (m, 1 H), 1.88 (m, 1 H). ¹³C
NMR (100.6 MHz, CDCI3): δ = 137.20,
129.16, 128.25, 126.91, 48.82, 41.59, 30.60, 25.60.
30
1-Phenyl-2-(phenylthio)propene
(3i,
[¹²i]
[¹5b]
[l]
[¹6b]
[¹8]
Z
/
E
= 5:1)
¹H
NMR (400 MHz, CDCl3): δ = 7.15-7.55
(21 H, m), 6.69 (1 H, s, Z form), 2.12
(3 H, s, E form, 0.17), 2.01 (3 H, s, Z form, 0.83). ¹³C
NMR (100.6 MHz, CDCl3): δ (Z) = 136.72, 133.50,
131.98, 131.57, 130.79, 128.98, 128.82, 127.96, 127.12, 126.91,
25.55; δ (E) = 137.04,
133.83, 131.96, 131.41, 130.69, 129.03, 128.62, 128.21, 127.33,
126.69, 19.49.
31
(
Z
)-1,2-Diphenyl-1-(phenylthio)ethene
(3k)
[¹5b]
¹H NMR (400 MHz, CDCl3): δ = 7.72
(1 H, d, J = 7.6
Hz), 7.62 (1 H, d, J = 7.8
Hz), 6.92-7.52 (13 H, m), 6.79 (1 H, s). ¹³C
NMR (100.6 MHz, CDCl3): δ = 140.83,
137.86, 136.64, 135.64, 134.56, 132.25, 129.74, 129.44, 129.00,
128.58, 128.10, 127.95, 127.36, 125.73.
32
Typical Procedure
for the Thermal and CuI-Catalyzed
Z
- to
E
-Isomerization of Alkenyl Sulfides
In
each of two Schlenk tubes under argon atmosphere were placed phenyl-(2-styryl)sulfide
(Z/E = 2.4:1,
0.106 g, 0.5 mmol). In one of the Schlenk tubes were added thiophenol (2a, 0.055 g, 0.05 mmol), and CuI (0.006
g, 3 mol%). Both tubes were heated at 85 ˚C.
The changes of the Z/E ratio was inspected by ¹H
NMR spectroscopy. After 4 h without PhSH and CuI the ratio was Z/E = 1.8:1,
with CuI and thiol only 100% E-isomer 3a was observed (Table
[³]
, entry 1).