Subscribe to RSS
DOI: 10.1055/s-0031-1291380
Glanzmann Thrombasthenia-Like Syndromes Associated with Macrothrombocytopenias and Mutations in the Genes Encoding the αIIbβ3 Integrin
Publication History
Publication Date:
18 November 2011 (online)

ABSTRACT
Glanzmann thrombasthenia (GT) is the most widely studied inherited disorder of platelets; it is caused by the absence of platelet aggregation due to quantitative and/or qualitative deficiencies of the αIIbβ3 integrin coded by the ITGA2B and ITGB3 genes located at 17q21–23. Although platelet count and platelet volume (and morphology) are normal in classic GT, some reports have inferred a role for αIIbβ3 in megakaryocytopoiesis and some novel but rare point mutations in either of the ITGA2B and ITGB3 genes have been associated with an altered platelet production and selective deficiencies in platelet function. This was brought to light by the discovery of mutations at Arg995 in αIIb and Asp723 in β3 that lead to platelet anisotropy (increased size variation) and thrombocytopenia. Significantly, Arg995 and Asp723 form a salt linkage binding the cytoplasmic tails of αIIbβ3 together keeping the integrin in a bent resting state. Mutations weakening this link (if not abolishing it) increase the activation state of αIIbβ3 and interfere with megakaryocytopoiesis. Other mutations affecting platelet production involve extracellular but membrane proximal domains of β3. Our purpose is to review the mutations in the ITGA2B and ITGB3 genes that lead to anisotropy and to discuss mechanisms by which this can be brought about.
KEYWORDS
Inherited platelet disorder - bleeding syndrome - macrothrombocytopenia - Glanzmann thrombasthenia - integrin αIIbβ3
REFERENCES
- 1 Nurden A, George J N. Inherited abnormalities of the platelet membrane: Glanzmann thrombasthenia, Bernard-Soulier
syndrome, and other disorders. In: Colman R W, Marder V J, Clowes A W, et al, eds. Haemostasis and Thrombosis Basic Principles & Clinical Practice. 5th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2006: 987-1010
MissingFormLabel
- 2 Nurden P, George J N, Nurden A. Inherited thrombocytopenias. In: Colman R W, Marder V J, Clowes A W, et al, eds. Haemostasis and Thrombosis: Basic Principles & Clinical Practice. 5th ed. Philadelphia, PA: Lippincott, Williams & Wilkins; 2006: 975-986
MissingFormLabel
- 3
Nurden P, Nurden A T.
Congenital disorders associated with platelet dysfunctions.
Thromb Haemost.
2008;
99
(2)
253-263
MissingFormLabel
- 4
Nurden A T.
Glanzmann thrombasthenia.
Orphanet J Rare Dis.
2006;
1
10-18
MissingFormLabel
- 5
George J N, Caen J P, Nurden A T.
Glanzmann's thrombasthenia: the spectrum of clinical disease.
Blood.
1990;
75
(7)
1383-1395
MissingFormLabel
- 6
Hodivala-Dilke K M, McHugh K P, Tsakiris D A et al..
β3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental
defects and reduced survival.
J Clin Invest.
1999;
103
(2)
229-238
MissingFormLabel
- 7
Poujol C, Tronik-Le Roux D, Tropel P et al..
Ultrastructural analysis of bone marrow hematopoiesis in mice transgenic for the thymidine
kinase gene driven by the αIIb promoter.
Blood.
1998;
92
(6)
2012-2023
MissingFormLabel
- 8
Larson M K, Watson S P.
Regulation of proplatelet formation and platelet release by integrin αIIbβ3.
Blood.
2006;
108
(5)
1509-1514
MissingFormLabel
- 9
Mazharian A, Thomas S G, Dhanjal T S, Buckley C D, Watson S P.
Critical role of Src-Syk-PLCγ2 signaling in megakaryocyte migration and thrombopoiesis.
Blood.
2010;
116
(5)
793-800
MissingFormLabel
- 10
Xiao T, Takagi J, Coller B S, Wang J H, Springer T A.
Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics.
Nature.
2004;
432
(7013)
59-67
MissingFormLabel
- 11
Hughes P E, Diaz-Gonzalez F, Leong L et al..
Breaking the integrin hinge. A defined structural constraint regulates integrin signaling.
J Biol Chem.
1996;
271
(12)
6571-6574
MissingFormLabel
- 12
Yang J, Ma Y Q, Page R C, Misra S, Plow E F, Qin J.
Structure of an integrin alphaIIbβ3 transmembrane-cytoplasmic heterocomplex provides
insight into integrin activation.
Proc Natl Acad Sci U S A.
2009;
106
(42)
17729-17734
MissingFormLabel
- 13
Coller B S, Shattil S J.
The GPIIb/IIIa Integrin alphaIIbbeta3 odyssey: a technology-driven saga of a receptor
with twists, turns, and even a bend.
Blood.
2008;
112
(8)
3011-3025
MissingFormLabel
- 14
Hardisty R, Pidard D, Cox A et al..
A defect of platelet aggregation associated with an abnormal distribution of glycoprotein
IIb-IIIa complexes within the platelet: the cause of a lifelong bleeding disorder.
Blood.
1992;
80
(3)
696-708
MissingFormLabel
- 15
Peyruchaud O, Nurden A T, Milet S et al..
R to Q amino acid substitution in the GFFKR sequence of the cytoplasmic domain of
the integrin IIb subunit in a patient with a Glanzmann's thrombasthenia-like syndrome.
Blood.
1998;
92
(11)
4178-4187
MissingFormLabel
- 16
Kunishima S, Kashiwagi H, Ito Y et al..
A heterozygous ITGA2B R995W mutation causes constitutive activation of the αIIbβ3
receptor and results in congenital macrothrombocytopenia.
J Thromb Haemost.
2009;
7
(Suppl 2)
PP-TH-081(abstr)
MissingFormLabel
- 17
Ghevaert C, Salsmann A, Watkins N A et al..
A nonsynonymous SNP in the ITGB3 gene disrupts the conserved membrane-proximal cytoplasmic
salt bridge in the alphaIIbbeta3 integrin and cosegregates dominantly with abnormal
proplatelet formation and macrothrombocytopenia.
Blood.
2008;
111
(7)
3407-3414
MissingFormLabel
- 18
Schaffner-Reckinger E, Salsmann A, Debili N et al..
Overexpression of the partially activated αIIbβ3D723H integrin salt bridge mutant
downregulates RhoA activity and induces microtubule-dependent proplatelet-like extensions
in Chinese hamster ovary cells.
J Thromb Haemost.
2009;
7
(7)
1207-1217
MissingFormLabel
- 19
Jayo A, Conde I, Lastres P et al..
L718P mutation in the membrane-proximal cytoplasmic tail of β3 promotes abnormal αIIbβ3
clustering and lipid microdomain coalescence, and associates with a thrombasthenia-like
phenotype.
Haematologica.
2010;
95
(7)
1158-1166
MissingFormLabel
- 20
Gresele P, Falcinelli E, Giannini S et al..
Dominant inheritance of a novel integrin β3 mutation associated with a hereditary
macrothrombocytopenia and platelet dysfunction in two Italian families.
Haematologica.
2009;
94
(5)
663-669
MissingFormLabel
- 21
Vanhoorelbeke K, De Meyer S F, Pareyn I et al..
The novel S527F mutation in the integrin β3 chain induces a high affinity alphaIIbbeta3
receptor by hindering adoption of the bent conformation.
J Biol Chem.
2009;
284
(22)
14914-14920
MissingFormLabel
- 22
Kamata T, Ambo H, Puzon-McLaughlin W et al..
Critical cysteine residues for regulation of integrin alphaIIbbeta3 are clustered
in the epidermal growth factor domains of the β3 subunit.
Biochem J.
2004;
378
(Pt 3)
1079-1082
MissingFormLabel
- 23
Ruan J, Schmugge M, Clemetson K J et al..
Homozygous Cys542—> Arg substitution in GPIIIa in a Swiss patient with type I Glanzmann's
thrombasthenia.
Br J Haematol.
1999;
105
(2)
523-531
MissingFormLabel
- 24
Milet-Marsal S, Breillat C, Peyruchaud O et al..
Two different β3 cysteine substitutions alter alphaIIbβ3 maturation and result in
Glanzmann thrombasthenia.
Thromb Haemost.
2002;
88
(1)
104-110
MissingFormLabel
- 25
Grimaldi C M, Chen F, Scudder L E, Coller B S, French D L.
A Cys374Tyr homozygous mutation of platelet glycoprotein IIIa (β 3) in a Chinese patient
with Glanzmann's thrombasthenia.
Blood.
1996;
88
(5)
1666-1675
MissingFormLabel
- 26
Chen P, Melchior C, Brons N HC et al..
Probing conformation changes in the I-like domain and the cysteine-rich repeat of
human β3 integrins following disulfide bond disruption by cysteine mutations identification
of cysteine 598 involved in αIIbβ3 activation.
J Biol Chem.
2001;
276
38628-38635
MissingFormLabel
- 27
Mor-Cohen R, Rosenberg N, Peretz H et al..
Disulfide bond disruption by a β3-Cys549Arg mutation in six Jordanian families with
Glanzmann thrombasthenia causes diminished production of constitutively active αIIbβ3.
Thromb Haemost.
2007;
98
(6)
1257-1265
MissingFormLabel
- 28
Ruiz C, Liu C Y, Sun Q H et al..
A point mutation in the cysteine-rich domain of glycoprotein (GP) IIIa results in
the expression of a GPIIb-IIIa (alphaIIbbeta3) integrin receptor locked in a high-affinity
state and a Glanzmann thrombasthenia-like phenotype.
Blood.
2001;
98
(8)
2432-2441
MissingFormLabel
- 29
Wilcox D A, Fang J, Northe P et al..
High mortality in mice with platelets expressing integrin αIIbβ3 locked in its high
affinity state.
Blood (ASH Annual Meeting Abstracts).
2008;
112
Abstract 1832
MissingFormLabel
- 30
Nurden A T, Nurden P.
Inherited thrombocytopenias.
Haematologica.
2007;
92
(9)
1158-1164
MissingFormLabel
- 31
Salles I I, Feys H B, Iserbyt B F, De Meyer S F, Vanhoorelbeke K, Deckmyn H.
Inherited traits affecting platelet function.
Blood Rev.
2008;
22
(3)
155-172
MissingFormLabel
- 32
Nakamura F, Pudas R, Heikkinen O et al..
The structure of the GPIb-filamin A complex.
Blood.
2006;
107
(5)
1925-1932
MissingFormLabel
- 33
Poujol C, Ware J, Nieswandt B, Nurden A T, Nurden P.
Absence of GPIbalpha is responsible for aberrant membrane development during megakaryocyte
maturation: ultrastructural study using a transgenic model.
Exp Hematol.
2002;
30
(4)
352-360
MissingFormLabel
- 34
Eckly A, Strassel C, Freund M et al..
Abnormal megakaryocyte morphology and proplatelet formation in mice with megakaryocyte-restricted
MYH9 inactivation.
Blood.
2009;
113
(14)
3182-3189
MissingFormLabel
- 35
Pecci A, Malara A, Badalucco S et al..
Megakaryocytes of patients with MYH9-related thrombocytopenia present an altered proplatelet
formation.
Thromb Haemost.
2009;
102
(1)
90-96
MissingFormLabel
- 36
Freson K, Devriendt K, Matthijs G et al..
Platelet characteristics in patients with X-linked macrothrombocytopenia because of
a novel GATA1 mutation.
Blood.
2001;
98
(1)
85-92
MissingFormLabel
- 37
Geddis A E.
Megakaryopoiesis.
Semin Hematol.
2010;
47
(3)
212-219
MissingFormLabel
- 38
Chen Z, Naveiras O, Balduini A et al..
The May-Hegglin anomaly gene MYH9 is a negative regulator of platelet biogenesis modulated
by the Rho-ROCK pathway.
Blood.
2007;
110
(1)
171-179
MissingFormLabel
- 39
Sabri S, Jandrot-Perrus M, Bertoglio J et al..
Differential regulation of actin stress fiber assembly and proplatelet formation by
α2β1 integrin and GPVI in human megakaryocytes.
Blood.
2004;
104
(10)
3117-3125
MissingFormLabel
- 40
Malara A, Gruppi C, Rebuzzini P et al..
Megakaryocyte-matrix interaction within bone marrow: new roles for fibronectin and
factor XIII-A.
Blood.
2011;
117
(8)
2476-2483
MissingFormLabel
- 41
Zhu J, Luo B H, Barth P, Schonbrun J, Baker D, Springer T A.
The structure of a receptor with two associating transmembrane domains on the cell
surface: integrin alphaIIbbeta3.
Mol Cell.
2009;
34
(2)
234-249
MissingFormLabel
- 42
Metcalf D G, Moore D T, Wu Y et al..
NMR analysis of the alphaIIb β3 cytoplasmic interaction suggests a mechanism for integrin
regulation.
Proc Natl Acad Sci U S A.
2010;
107
(52)
22481-22486
MissingFormLabel
- 43
Mitchell W B, Li J, Murcia M, Valentin N, Newman P J, Coller B S.
Mapping early conformational changes in alphaIIb and β3 during biogenesis reveals
a potential mechanism for alphaIIbbeta3 adopting its bent conformation.
Blood.
2007;
109
(9)
3725-3732
MissingFormLabel
- 44
Raab M, Daxecker H, Edwards R J, Treumann A, Murphy D, Moran N.
Protein interactions with the platelet integrin αIIb regulatory motif.
Proteomics.
2010;
10
(15)
2790-2800
MissingFormLabel
- 45
Nurden A T.
Sustaining platelet counts in chronic ITP.
Lancet.
2011;
377
(9763)
358-360
MissingFormLabel
- 46
Hourdillé P, Gralnick H R, Heilmann E et al..
von Willebrand factor bound to glycoprotein Ib is cleared from the platelet surface
after platelet activation by thrombin.
Blood.
1992;
79
(8)
2011-2021
MissingFormLabel
Alan T NurdenPh.D.
Centre de Référence des Pathologies Plaquettaires, Plateforme Technologique et d'Innovation
Biomédicale
Hôpital Xavier Arnozan, Pessac 33600, France
Email: Alan.Nurden@cnrshl.u-bordeaux2.fr