J Knee Surg 2012; 25(01): 009-016
DOI: 10.1055/s-0031-1299654
Special Focus Section
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Microfracture and Augments

Andreas H. Gomoll
1   Department of Orthopaedic Surgery, Brigham and Women's Hospital, Boston, Massachusetts
› Author Affiliations
Further Information

Publication History

04 August 2011

05 September 2011

Publication Date:
12 April 2012 (online)

Abstract

Microfracture is in widespread clinical use as an intervention for symptomatic cartilage defects. While effective when used with strict indications for the treatment of smaller defects in the femoral condyles, the resultant fibrocartilaginous repair tissue has shown degradation over time when used in larger or patellofemoral defects. This article reviews the indications, technique, and results of standard microfracture. It also provides an overview of augmentation devices such as biomaterials and growth factors that have the potential to enhance the outcomes of microfracture, potentially widening its indications to include larger defects and other locations. Augmentation techniques discussed include collagen and polymer membranes, chitosan and fibrin gels, hyaluronan injections, as well as numerous growth factors.

 
  • References

  • 1 Irrgang JJ, Pezzullo D. Rehabilitation following surgical procedures to address articular cartilage lesions in the knee. J Orthop Sports Phys Ther 1998; 28 (4) 232-240
  • 2 Steadman JR, Rodkey WG, Rodrigo JJ. Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res 2001; (391, Suppl) S362-S369
  • 3 Hurst JM, Steadman JR, O'Brien L, Rodkey WG, Briggs KK. Rehabilitation following microfracture for chondral injury in the knee. Clin Sports Med 2010; 29 (2) 257-265, viii
  • 4 Steadman JR, Briggs KK, Rodrigo JJ, Kocher MS, Gill TJ, Rodkey WG. Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy 2003; 19 (5) 477-484
  • 5 Miller BS, Steadman JR, Briggs KK, Rodrigo JJ, Rodkey WG. Patient satisfaction and outcome after microfracture of the degenerative knee. J Knee Surg 2004; 17 (1) 13-17
  • 6 Mithoefer K, Williams III RJ, Warren RF , et al. The microfracture technique for the treatment of articular cartilage lesions in the knee. A prospective cohort study. J Bone Joint Surg Am 2005; 87 (9) 1911-1920
  • 7 Mithoefer K, Williams III RJ, Warren RF, Wickiewicz TL, Marx RG. High-impact athletics after knee articular cartilage repair: a prospective evaluation of the microfracture technique. Am J Sports Med 2006; 34 (9) 1413-1418
  • 8 Kon E, Gobbi A, Filardo G, Delcogliano M, Zaffagnini S, Marcacci M. Arthroscopic second-generation autologous chondrocyte implantation compared with microfracture for chondral lesions of the knee: prospective nonrandomized study at 5 years. Am J Sports Med 2009; 37 (1) 33-41
  • 9 Gudas R, Kalesinskas RJ, Kimtys V , et al. A prospective randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint in young athletes. Arthroscopy 2005; 21 (9) 1066-1075
  • 10 Asik M, Ciftci F, Sen C, Erdil M, Atalar A. The microfracture technique for the treatment of full-thickness articular cartilage lesions of the knee: midterm results. Arthroscopy 2008; 24 (11) 1214-1220
  • 11 Kreuz PC, Steinwachs MR, Erggelet C , et al. Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthritis Cartilage 2006; 14 (11) 1119-1125
  • 12 Knutsen G, Engebretsen L, Ludvigsen TC , et al. Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. J Bone Joint Surg Am 2004; 86-A (3) 455-464
  • 13 Kreuz PC, Erggelet C, Steinwachs MR , et al. Is microfracture of chondral defects in the knee associated with different results in patients aged 40 years or younger?. Arthroscopy 2006; 22 (11) 1180-1186
  • 14 Saris DB, Vanlauwe J, Victor J , et al; TIG/ACT/01/2000&EXT Study Group. Treatment of symptomatic cartilage defects of the knee: characterized chondrocyte implantation results in better clinical outcome at 36 months in a randomized trial compared to microfracture. Am J Sports Med 2009; 37 (Suppl. 01) 10S-19S
  • 15 Saris DB, Vanlauwe J, Victor J , et al. Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture. Am J Sports Med 2008; 36 (2) 235-246
  • 16 Coleman SH, Malizia R, Macgillivray J, Warren RF. Treatment of isolated articular cartilage lesions of the medial femoral condyle. A clinical nad MR comparison of autologous chondrocyte implantation vs. microfracture. Ortop Traumatol Rehabil 2001; 3 (2) 224-226
  • 17 Basad E, Ishaque B, Bachmann G, Stürz H, Steinmeyer J. Matrix-induced autologous chondrocyte implantation versus microfracture in the treatment of cartilage defects of the knee: a 2-year randomised study. Knee Surg Sports Traumatol Arthrosc 2010; 18 (4) 519-527
  • 18 Gudas R, Simonaityte R, Cekanauskas E, Tamosiūnas R. A prospective, randomized clinical study of osteochondral autologous transplantation versus microfracture for the treatment of osteochondritis dissecans in the knee joint in children. J Pediatr Orthop 2009; 29 (7) 741-748
  • 19 Von Keudell A, Atzwanger J, Forstner R, Resch H, Hoffelner T, Mayer M. Radiological evaluation of cartilage after microfracture treatment: a long-term follow-up study. Eur J Radiol 2011; ; June 16 (Epub ahead of print)
  • 20 Brown WE, Potter HG, Marx RG, Wickiewicz TL, Warren RF. Magnetic resonance imaging appearance of cartilage repair in the knee. Clin Orthop Relat Res 2004; (422) 214-223
  • 21 Zaslav K, Cole B, Brewster R , et al; STAR Study Principal Investigators. A prospective study of autologous chondrocyte implantation in patients with failed prior treatment for articular cartilage defect of the knee: results of the Study of the Treatment of Articular Repair (STAR) clinical trial. Am J Sports Med 2009; 37 (1) 42-55
  • 22 McNickle AG, L'Heureux DR, Yanke AB, Cole BJ. Outcomes of autologous chondrocyte implantation in a diverse patient population. Am J Sports Med 2009; 37 (7) 1344-1350
  • 23 Minas T, Gomoll AH, Rosenberger R, Royce RO, Bryant T. Increased failure rate of autologous chondrocyte implantation after previous treatment with marrow stimulation techniques. Am J Sports Med 2009; 37 (5) 902-908
  • 24 Pestka JM, Bode G, Salzmann G, Südkamp NP, Niemeyer P. Clinical outcome of autologous chondrocyte implantation for failed microfracture treatment of full-thickness cartilage defects of the knee joint. Am J Sports Med 2011; ; November 5 (Epub ahead of print)
  • 25 Hunziker EB. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage 2002; 10 (6) 432-463
  • 26 Insall JN. Intra-articular surgery for degenerative arthritis of the knee. A report of the work of the late K. H. Pridie. J Bone Joint Surg Br 1967; 49 (2) 211-228
  • 27 Chen H, Hoemann CD, Sun J , et al. Depth of subchondral perforation influences the outcome of bone marrow stimulation cartilage repair. J Orthop Res 2011; 29 (8) 1178-1184
  • 28 Chen H, Sun J, Hoemann CD , et al. Drilling and microfracture lead to different bone structure and necrosis during bone-marrow stimulation for cartilage repair. J Orthop Res 2009; 27 (11) 1432-1438
  • 29 Chen H, Chevrier A, Hoemann CD, Sun J, Ouyang W, Buschmann MD. Characterization of subchondral bone repair for marrow-stimulated chondral defects and its relationship to articular cartilage resurfacing. Am J Sports Med 2011; 39 (8) 1731-1740
  • 30 Benthien JP, Behrens P. The treatment of chondral and osteochondral defects of the knee with autologous matrix-induced chondrogenesis (AMIC): method description and recent developments. Knee Surg Sports Traumatol Arthrosc 2011; 19 (8) 1316-1319
  • 31 Dhollander AA, De Neve F, Almqvist KF , et al. Autologous matrix-induced chondrogenesis combined with platelet-rich plasma gel: technical description and a five pilot patients report. Knee Surg Sports Traumatol Arthrosc 2011; 19 (4) 536-542
  • 32 Benthien JP, Behrens P. Autologous matrix-induced chondrogenesis (AMIC). A one-step procedure for retropatellar articular resurfacing. Acta Orthop Belg 2010; 76 (2) 260-263
  • 33 Gille J, Schuseil E, Wimmer J, Gellissen J, Schulz AP, Behrens P. Mid-term results of Autologous Matrix-Induced Chondrogenesis for treatment of focal cartilage defects in the knee. Knee Surg Sports Traumatol Arthrosc 2010; 18 (11) 1456-1464
  • 34 Kumar MN, Muzzarelli RA, Muzzarelli C, Sashiwa H, Domb AJ. Chitosan chemistry and pharmaceutical perspectives. Chem Rev 2004; 104 (12) 6017-6084
  • 35 Chevrier A, Hoemann CD, Sun J, Buschmann MD. Chitosan-glycerol phosphate/blood implants increase cell recruitment, transient vascularization and subchondral bone remodeling in drilled cartilage defects. Osteoarthritis Cartilage 2007; 15 (3) 316-327
  • 36 Hoemann CD, Sun J, McKee MD , et al. Chitosan-glycerol phosphate/blood implants elicit hyaline cartilage repair integrated with porous subchondral bone in microdrilled rabbit defects. Osteoarthritis Cartilage 2007; 15 (1) 78-89
  • 37 Hoemann CD, Hurtig M, Rossomacha E , et al. Chitosan-glycerol phosphate/blood implants improve hyaline cartilage repair in ovine microfracture defects. J Bone Joint Surg Am 2005; 87 (12) 2671-2686
  • 38 Stanish WD, Restrepo A, Macdonald PB , et al. An International Randomized Clinical Trial Evaluating BST-CarGel: A New Gel Implant for Cartilage Repair. Presented at: ISAKOS, 8th Biennial Congress; Rio de Janeiro, Brazil; 2011: #149
  • 39 Erggelet C, Neumann K, Endres M, Haberstroh K, Sittinger M, Kaps C. Regeneration of ovine articular cartilage defects by cell-free polymer-based implants. Biomaterials 2007; 28 (36) 5570-5580
  • 40 Erggelet C, Endres M, Neumann K , et al. Formation of cartilage repair tissue in articular cartilage defects pretreated with microfracture and covered with cell-free polymer-based implants. J Orthop Res 2009; 27 (10) 1353-1360
  • 41 Patrascu JM, Freymann U, Kaps C, Poenaru DV. Repair of a post-traumatic cartilage defect with a cell-free polymer-based cartilage implant: a follow-up at two years by MRI and histological review. J Bone Joint Surg Br 2010; 92 (8) 1160-1163
  • 42 Gonen-Wadmany M, Oss-Ronen L, Seliktar D. Protein-polymer conjugates for forming photopolymerizable biomimetic hydrogels for tissue engineering. Biomaterials 2007; 28 (26) 3876-3886
  • 43 Bellamy N, Campbell J, Robinson V, Gee T, Bourne R, Wells G. Viscosupplementation for the treatment of osteoarthritis of the knee. Cochrane Database Syst Rev 2006; (2) CD005321
  • 44 Strauss E, Schachter A, Frenkel S, Rosen J. The efficacy of intra-articular hyaluronan injection after the microfracture technique for the treatment of articular cartilage lesions. Am J Sports Med 2009; 37 (4) 720-726
  • 45 Legović D, Zorihić S, Gulan G , et al. Microfracture technique in combination with intraarticular hyaluronic acid injection in articular cartilage defect regeneration in rabbit model. Coll Antropol 2009; 33 (2) 619-623
  • 46 Kang SW, Bada LP, Kang CS , et al. Articular cartilage regeneration with microfracture and hyaluronic acid. Biotechnol Lett 2008; 30 (3) 435-439
  • 47 Angel MJ, Sgaglione NA, Grande DA. Clinical applications of bioactive factors in sports medicine: current concepts and future trends. Sports Med Arthrosc 2006; 14 (3) 138-145
  • 48 Frenkel SR, Di Cesare PE. Scaffolds for articular cartilage repair. Ann Biomed Eng 2004; 32 (1) 26-34
  • 49 Gelse K, Klinger P, Koch M , et al. Thrombospondin-1 prevents excessive ossification in cartilage repair tissue induced by osteogenic protein-1. Tissue Eng Part A 2011; 17 (15–16) 2101-2112
  • 50 Klinger P, Surmann-Schmitt C, Brem M , et al. Chondromodulin 1 stabilizes the chondrocyte phenotype and inhibits endochondral ossification of porcine cartilage repair tissue. Arthritis Rheum 2011; 63 (9) 2721-2731
  • 51 Kuo AC, Rodrigo JJ, Reddi AH, Curtiss S, Grotkopp E, Chiu M. Microfracture and bone morphogenetic protein 7 (BMP-7) synergistically stimulate articular cartilage repair. Osteoarthritis Cartilage 2006; 14 (11) 1126-1135
  • 52 Sellers RS, Zhang R, Glasson SS , et al. Repair of articular cartilage defects one year after treatment with recombinant human bone morphogenetic protein-2 (rhBMP-2). J Bone Joint Surg Am 2000; 82 (2) 151-160
  • 53 Zhang X, Zheng Z, Liu P , et al. The synergistic effects of microfracture, perforated decalcified cortical bone matrix and adenovirus-bone morphogenetic protein-4 in cartilage defect repair. Biomaterials 2008; 29 (35) 4616-4629
  • 54 Yang HS, La WG, Bhang SH , et al. Hyaline cartilage regeneration by combined therapy of microfracture and long-term bone morphogenetic protein-2 delivery. Tissue Eng Part A 2011; 17 (13–14) 1809-1818
  • 55 Morisset S, Frisbie DD, Robbins PD, Nixon AJ, McIlwraith CW. IL-1ra/IGF-1 gene therapy modulates repair of microfractured chondral defects. Clin Orthop Relat Res 2007; 462: 221-228
  • 56 Feeley BT, Doty SB, Devcic Z, Warren RF, Lane JM. Deleterious effects of intermittent recombinant parathyroid hormone on cartilage formation in a rabbit microfracture model: a preliminary study. HSS J 2010; 6 (1) 79-84
  • 57 Saw K-Y, Anz A, Merican S , et al. Articular cartilage regeneration with autologous peripheral blood progenitor cells and hyaluronic acid after arthroscopic subchondral drilling: a report of 5 cases with histology. Arthroscopy 2011; 27 (4) 493-506
  • 58 Gobbi A, Karnatzikos G, Scotti C, Mahajan V, Mazzucco L, Grigolo B. One-Step Cartilage Repair with Bone Marrow Aspirate Concentrated Cells and Collagen Matrix in Full-Thickness Knee Cartilage Lesions Results at 2-Year Follow-up. Cartilage 2011; 2 (3) 286-299