J Knee Surg 2012; 25(03): 227-236
DOI: 10.1055/s-0031-1299663
Original Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Comparison of the Retro Screw and Standard Interference Screw for ACL Reconstruction

Robert Y. Wang
1   Department of Orthopedic Surgery, Pinnacle Health Sciences Center, Richmond Hill, Ontario, Canada
,
Robert A. Arciero
2   Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, Connecticut
,
Elifho Obopilwe
2   Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, Connecticut
,
Augustus D. Mazzocca
2   Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, Connecticut
› Author Affiliations
Further Information

Publication History

09 February 2011

02 July 2011

Publication Date:
03 May 2012 (online)

Abstract

The objective of the study was to compare the load to failure between a retro screw (RS) and a standard interference screw (IS) for tibial-sided anterior cruciate ligament (ACL) fixation. We used 20 bovine tibia and extensor tendons for the study. A group of 10 specimens underwent IS fixation while the other 10 underwent RS fixation. Within each group, five specimens had graft suture in contact (interdigitating) with the screw threads. All specimens were tested on the MTS 858 Mini Bionix II (MTS Systems, Shakopee, MN). There was no statistically significant difference between the RS and IS with respect to peak load to failure. IS with suture interdigitation failed at an average of 520 N (range: 358 to 793 N), while the RS with suture interdigitation failed at 613 N (range: 438 to 1089 N). The IS without suture interdigitation failed at 654 N and the RS without suture interdigitation at 531 N. Specimens with a whipstitch in contact with the screw did not demonstrate higher pull out strength. The RS fixation strength appears to equal the IS. Graft suture contact with screw threads does not increase fixation strength. Based on this study, using a RS for tibial ACL soft tissue graft fixation is feasible and provides equal fixation strength compared with the standard IS.

 
  • References

  • 1 Lubowitz JH. No-tunnel anterior cruciate ligament reconstruction: the transtibial all-inside technique. Arthroscopy 2006; 22(8): 900, e1-e11
  • 2 Cha PS, West RV, Fu FH. Anterior cruciate ligament reconstruction: hamstring autograft/single and double bundle techniques. In: Surgical Techniques in Sports Medicine Philadelphia: Lippincott Williams & Wilkins; 2007: 327-335
  • 3 Namkoong S, Heywood CS, Bravman JT, Ieyasa K, Kummer FJ, Meislin RJ. The effect of interference screw diameter on soft tissue graft fixation. Bull Hosp Jt Dis 2006; 63(3-4): 153-155
  • 4 Kousa P, Järvinen TL, Vihavainen M, Kannus P, Järvinen M. The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part II: tibial site. Am J Sports Med 2003; 31(2): 182-188
  • 5 Mae T, Shino K, Nakata K, Toritsuka Y, Otsubo H, Fujie H. Optimization of graft fixation at the time of anterior cruciate ligament reconstruction. Part II: effect of knee flexion angle. Am J Sports Med 2008; 36(6): 1094-1100
  • 6 Zantop T, Weimann A, Schmidtko R, Herbort M, Raschke MJ, Petersen W. Graft laceration and pullout strength of soft-tissue anterior cruciate ligament reconstruction: in vitro study comparing titanium, poly-d,l-lactide, and poly-d,l-lactide-tricalcium phosphate screws. Arthroscopy 2006; 22(11): 1204-1210
  • 7 Hayes DA, Watts MC, Tevelen GA, Crawford RW. Central versus peripheral tibial screw placement in hamstring anterior cruciate ligament reconstruction: in vitro biomechanics. Arthroscopy 2005; 21(6): 703-706
  • 8 Brown GA, Peña F, Grøntvedt T, Labadie D, Engebretsen L. Fixation strength of interference screw fixation in bovine, young human, and elderly human cadaver knees: influence of insertion torque, tunnel-bone block gap, and interference. Knee Surg Sports Traumatol Arthrosc 1996; 3(4): 238-244
  • 9 Giurea M, Zorilla P, Amis AA, Aichroth P. Comparative pull-out and cyclic-loading strength tests of anchorage of hamstring tendon grafts in anterior cruciate ligament reconstruction. Am J Sports Med 1999; 27(5): 621-625
  • 10 Weiler A, Hoffmann RF, Siepe CJ, Kolbeck SF, Südkamp NP. The influence of screw geometry on hamstring tendon interference fit fixation. Am J Sports Med 2000; 28(3): 356-359
  • 11 Jomha NM, Raso VJ, Leung P. Effect of varying angles on the pullout strength of interference screw fixation. Arthroscopy 1993; 9(5): 580-583
  • 12 Ferretti A, Conteduca F, Labianca L, Monaco E, De Carli A. Evolgate fixation of doubled flexor graft in anterior cruciate ligament reconstruction: biomechanical evaluation with cyclic loading. Am J Sports Med 2005; 33(4): 574-582
  • 13 Woo SL, Hollis JM, Adams DJ, Lyon RM, Takai S. Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation. Am J Sports Med 1991; 19(3): 217-225
  • 14 Tetsumura S, Fujita A, Nakajima M, Abe M. Biomechanical comparison of different fixation methods on the tibial side in anterior cruciate ligament reconstruction: a biomechanical study in porcine tibial bone. J Orthop Sci 2006; 11(3): 278-282
  • 15 Selby JB, Johnson DL, Hester P, Caborn DN. Effect of screw length on bioabsorbable interference screw fixation in a tibial bone tunnel. Am J Sports Med 2001; 29(5): 614-619
  • 16 Brand Jr JC, Pienkowski D, Steenlage E, Hamilton D, Johnson DL, Caborn DN. Interference screw fixation strength of a quadrupled hamstring tendon graft is directly related to bone mineral density and insertion torque. Am J Sports Med 2000; 28(5): 705-710
  • 17 Brand Jr J, Weiler A, Caborn DN, Brown Jr CH, Johnson DL. Graft fixation in cruciate ligament reconstruction. Am J Sports Med 2000; 28(5): 761-774
  • 18 Poolman RW, Farrokhyar F, Bhandari M. Hamstring tendon autograft better than bone patellar-tendon bone autograft in ACL reconstruction: a cumulative meta-analysis and clinically relevant sensitivity analysis applied to a previously published analysis. Acta Orthop 2007; 78(3): 350-354
  • 19 John A, Stanley R, Nilsson K, Field J. Augmentation of tibial fixation of soft-tissue grafts in anterior cruciate ligament reconstruction. Arthroscopy 2007; 23(11): 1193-1197
  • 20 Ishibashi Y, Rudy TW, Livesay GA, Stone JD, Fu FH, Woo SL. The effect of anterior cruciate ligament graft fixation site at the tibia on knee stability: evaluation using a robotic testing system. Arthroscopy 1997; 13(2): 177-182
  • 21 Höher J, Möller HD, Fu FH. Bone tunnel enlargement after anterior cruciate ligament reconstruction: fact or fiction?. Knee Surg Sports Traumatol Arthrosc 1998; 6(4): 231-240
  • 22 Bravman J, Ishak C, Gelber J, Namkoong S, Jazrawi LM, Kummer FJ. The interaction between the whipstitch sutures of multi-strand ACL grafts and interference screw fixation. Bull Hosp Jt Dis 2006; 63(3-4): 156-157
  • 23 Morgan CD, Kalmam VR, Grawl DM. Isometry testing for anterior cruciate ligament reconstruction revisited. Arthroscopy 1995; 11(6): 647-659
  • 24 Morgan CD, Stein DA, Leitman EH, Kalman VR. Anatomic tibial graft fixation using a retrograde bio-interference screw for endoscopic anterior cruciate ligament reconstruction. Arthroscopy 2002; 18(7): E38-
  • 25 Stähelin AC, Weiler A. All-inside anterior cruciate ligament reconstruction using semitendinosus tendon and soft threaded biodegradable interference screw fixation. Arthroscopy 1997; 13(6): 773-779
  • 26 Kousa P, Järvinen TL, Vihavainen M, Kannus P, Järvinen M. The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part II: tibial site. Am J Sports Med 2003; 31(2): 182-188
  • 27 Rhee PC, Levy BA, Stuart MJ, Thoreson A, An KN, Dahm DL. A biomechanical comparison of the Delta screw and RetroScrew tibial fixation on initial intra-articular graft tension. Knee Surg Sports Traumatol Arthrosc 2011; 19(5): 781-786