Informationen aus Orthodontie & Kieferorthopädie 2012; 44(01): 23-29
DOI: 10.1055/s-0032-1306352
Übersichtsartikel
© Georg Thieme Verlag KG Stuttgart · New York

DICOM-Daten als Basis für die FEM-Simulation zahnmedizinischer Fragestellungen – ein technischer Übersichtsartikel

DICOM Data as a Basis for FEM Simulation in Dentistry – A Technical Review
B. Ludwig
1   Kieferorthopädische Praxis, Traben-Trarbach
3   Poliklinik für Kieferorthopädie, Universität des Saarlandes, Homburg/Saar
,
A. Geringer
2   Lehrstuhl für Technische Mechanik, Universität des Saarlandes, Saarbrücken
,
B. Glasl
1   Kieferorthopädische Praxis, Traben-Trarbach
,
S. Diebels
2   Lehrstuhl für Technische Mechanik, Universität des Saarlandes, Saarbrücken
,
J. Lisson
3   Poliklinik für Kieferorthopädie, Universität des Saarlandes, Homburg/Saar
,
T. Lietz
4   Neulingen
› Author Affiliations
Further Information

Publication History

Publication Date:
29 March 2012 (online)

Zusammenfassung

Zielsetzung:

Das Ziel der vorliegenden Arbeit war es, einen methodischen Weg aufzuzeigen, um CT-Bilder in ein rechenbares Finite-Elemente-Modell umzuwandeln.

Material und Methode:

Aus den DICOM-Daten eines Patienten-CTs wurden der für die FEM-Analyse interessante Bereich mit dem Programm 3D Slicer separiert und anschließend anhand der Grauwerte segmentiert. Aus dem im STL-Format vorliegenden Bildausschnitt wurden mit dem Programm CATIA® das Modell eines unteren Molars mit parodontalem Ligament (PDL), der umgebende Knochen und ein kieferorthopädisches Attachment generiert. Zur Diskretisierung wurden die Oberflächenmodelle von Zahn, PDL, Knochen und der kieferorthopädischen Behandlungsapparatur knotenweise miteinander verbunden. Als Ergebnis des Diskretisierungsprozesses entstand ein FE-Netz mit insgesamt 156 982 Volumenelementen.

Ergebnisse:

Nach dem beschriebenen Weg wurden ein unterer Molar mit PDL und der angrenzende Knochen aus einer CT-Aufnahme isoliert und für die Untersuchung der initialen Zahnbewegung mittels der Finite-Elemente-Methode aufbereitet. Auf der Grundlage einer CT-Aufnahme kann die numerische Simulation der initialen Zahnbewegung durchgeführt werden. Dabei lassen sich unterschiedliche Lastsituationen analysieren und vergleichen.

Schlussfolgerung:

Die Finite-Elemente-Analyse mit Patientendaten ist eine vielversprechende Möglichkeit zur Belastungssimulation im Hinblick auf gerätespezifische Wirkungen, Nebenwirkungen und Weiterentwicklungen.

Abstract

Objectives:

The aim of the present study was to demonstrate a method of converting CT images into a computable finite element model.

Materials and methods:

The program 3D Slicer was used to separate key areas from the DICOM data of a patient’s CTs for the purpose of finite element analysis and then to segment them according to their grayscale values. The resulting digital image in STL format was processed in the program CATIA® to generate a model of a lower molar together with the periodontal ligament (PDL), the surrounding bone and an orthodontic attachment. Discretization was carried out by creating a nodal mesh from the surface models of the tooth, PDL, the bone and the orthodontic appliance. The result of the discretization process was a finite element mesh consisting of a total of 156 982 volume elements (voxels).

Results:

Using the method described, a mandibular molar together with the PDL and the surrounding bone were isolated from a CT image and prepared for analysis of the initial tooth movement by means of the finite element method. Finally different load situation and orthodontic biomechanics can be simulated and compared.

Conclusion:

A numerical simulation of the initial tooth movement can be carried out on the basis of a CT image. By using this method it is possible to analyze and compare different load situations in order to achieve as uniform a pressure distribution as possible in the PDL and controlled initial tooth displacement. Finite element analysis of patient data could be used to determine the individual dosage of orthodontic forces.

 
  • Literatur

  • 1 Bell RB, Markiewicz MR. Computer-assisted planning, stereolithographic modeling, and intraoperative navigation for complex orbital reconstruction: a descriptive study in a preliminary cohort. J Oral Maxillofac Surg 2009; 67: 2559-2570
  • 2 Cattaneo PM, Dalstra M, Melsen B. Moment-to-force ratio, center of rotation, and force level: a finite element study predicting their interdependency for simulated orthodontic loading regimens. Am J Orthod Dentofacial Orthop 2008; 133: 681-689
  • 3 Clelland NL, Lee JK, Bimbenet OC et al. Use of an axisymmetric finite element method to compare maxillary bone variables for a loaded implant. J Prosthodont 1993; 2: 183-189
  • 4 Clement R, Schneider J, Brambs HJ et al. Quasi-automatic 3D finite element model generation for individual single-rooted teeth and periodontal ligament. Comput Methods Programs Biomed 2004; 73: 135-144
  • 5 Diedrich P. Kieferorthopädie II. München, Wien, Baltimore: Urban & Schwarzenberg; 2000. Pages
  • 6 Farah JW, Craig RG. Finite element stress analysis of a restored axisymmetric first molar. J Dent Res 1974; 53: 859-866
  • 7 Farah JW, Craig RG, Sikarskie DL. Photoelastic and finite element stress analysis of a restored axisymmetric first molar. J Biomech 1973; 6: 511-520
  • 8 Field C, Ichim I, Swain MV et al. Mechanical responses to orthodontic loading: a 3-dimensional finite element multi-tooth model. Am J Orthod Dentofacial Orthop 2009; 135: 174-181
  • 9 Gunter T, Merz B, Mericske-Stern R et al. Testing dental implants with an in vivo finite element model. Biomed Tech (Berl) 2000; 45: 272-276
  • 10 Hasegawa A, Shinya A, Nakasone Y et al. Development of 3D CAD/FEM Analysis System for Natural Teeth and Jaw Bone Constructed from X-Ray CT Images. Int J Biomater 2010
  • 11 Hood JA, Farah JW, Craig RG. Modification of stresses in alveolar bone induced by a tilted molar. J Prosthet Dent 1975; 34: 415-421
  • 12 Liao SH, Tong RF, Dong JX. Influence of anisotropy on peri-implant stress and strain in complete mandible model from CT. Comput Med Imaging Graph 2008; 32: 53-60
  • 13 Magne P, Oganesyan T. CT scan-based finite element analysis of premolar cuspal deflection following operative procedures. Int J Periodontics Restorative Dent 2009; 29: 361-369
  • 14 Magne P, Tan DT. Incisor compliance following operative procedures: a rapid 3-D finite element analysis using micro-CT data. J Adhes Dent 2008; 10: 49-56
  • 15 Miyakawa O. Mechanical studies on the dental bridges by the finite element method (2). – An idealized symmetrical bridge with a vertical load at the center of pontic – (author’s transl). Shika Rikogaku Zasshi 1976; 17: 278-286
  • 16 Miyakawa O. Mechanical studies on the dental bridges by the finite element method (3). – Behavior of a posterior bridge model under various loads – (author’s transl). Shika Rikogaku Zasshi 1976; 17: 287-296
  • 17 Miyakawa O. Mechanical studies on the dental bridges by the finite element method. (1) – An abutment tooth model – (author’s transl). Shika Rikogaku Zasshi 1976; 17: 269-277
  • 18 Nakajima A, Murata M, Tanaka E et al. Development of three-dimensional FE modeling system from the limited cone beam CT images for orthodontic tipping tooth movement. Dent Mater J 2007; 26: 882-891
  • 19 Nomoto S, Matsunaga S, Ide Y et al. Stress distribution in maxillary alveolar ridge according to finite element analysis using micro-CT. Bull Tokyo Dent Coll 2006; 47: 149-156
  • 20 Okumura N, Stegaroiu R, Nishiyama H et al. Finite element analysis of implant-embedded maxilla model from CT data: Comparison with the conventional model. J Prosthodont Res 2010;
  • 21 Panigrahi P, Vineeth V. Biomechanical effects of fixed functional appliance on craniofacial structures. Angle Orthod 2009; 79: 668-675
  • 22 Pianykh OS. Digital Imaging and Communications in Medicine (DICOM). Berlin: Springer; 2008. Pages
  • 23 Poiate IA, de Vasconcellos AB, de Santana RB et al. Three-dimensional stress distribution in the human periodontal ligament in masticatory, parafunctional, and trauma loads: finite element analysis. J Periodontol 2009; 80: 1859-1867
  • 24 Poiate IA, Vasconcellos AB, Andueza A et al. Three dimensional finite element analyses of oral structures by computerized tomography. J Biosci Bioeng 2008; 106: 606-609
  • 25 Rahimi A, Keilig L, Bendels G et al. 3D reconstruction of dental specimens from 2D histological images and microCT-scans. Comput Methods Biomech Biomed Engin 2005; 8: 167-176
  • 26 Reimann S. Experimentelle und numerische Untersuchungen des biomechanischen Verhaltens von mehrwurzeligen Zähnen. Bonn: Rheinische Friedrich-Wilhelms-Universität, Mathematisch-Naturwissenschaftliche Fakultät; 2008
  • 27 Rodrigues FP, Li J, Silikas N et al. Sequential software processing of micro-XCT dental-images for 3D-FE analysis. Dent Mater 2009; 25: e47-e55
  • 28 Selna LG, Shillingburg Jr HT, Kerr PA. Finite element analysis of dental structures – axisymmetric and plane stress idealizations. J Biomed Mater Res 1975; 9: 237-252
  • 29 Shimizu Y, Usui K, Araki K et al. Study of finite element modeling from CT images. Dent Mater J 2005; 24: 447-455
  • 30 Tajima K, Chen KK, Takahashi N et al. Three-dimensional finite element modeling from CT images of tooth and its validation. Dent Mater J 2009; 28: 219-226
  • 31 Telli C, Gulkan P. Stress analysis during root canal filling by vertical and lateral condensation procedures: a three-dimensional finite element model of a maxillary canine tooth. Br Dent J 1998; 185: 79-86
  • 32 Verdonschot N, Fennis WM, Kuijs RH et al. Generation of 3-D finite element models of restored human teeth using micro-CT techniques. Int J Prosthodont 2001; 14: 310-315
  • 33 Weinstein AM, Klawitter JJ, Cook SD. Finite element analysis as an aid to implant design. Biomater Med Devices Artif Organs 1979; 7: 169-175
  • 34 Weinstein AM, Klawitter JJ, Cook SD. Implant-bone interface characteristics of bioglass dental implants. J Biomed Mater Res 1980; 14: 23-29
  • 35 Williams JV, Revington PJ. Novel use of an aerospace selective laser sintering machine for rapid prototyping of an orbital blowout fracture. Int J Oral Maxillofac Surg 2010; 39: 182-184