J Knee Surg 2012; 25(05): 385-390
DOI: 10.1055/s-0032-1313745
Original Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Testing of Double-Stranded Allografts Used in ACL Reconstruction

David C. Flanigan
1   Sports Medicine Center, Ohio State University, Columbus, Ohio
2   Department of Orthopaedics, Ohio State University, Columbus, Ohio
,
Jeremy Roberts Child
3   Department of Radiology, Ohio State University, Columbus, Ohio
,
Alan S. Litsky
2   Department of Orthopaedics, Ohio State University, Columbus, Ohio
› Author Affiliations
Further Information

Publication History

23 February 2011

27 November 2011

Publication Date:
15 May 2012 (online)

Abstract

We used bovine tibiae and two-stranded human anterior tibialis tendon grafts to compare biomechanical properties of two tibial fixation devices, the Milagro Interference Screw (Milagro) and the Bio-Intrafix Soft Tissue Tibial Fixation System (Bio-Intrafix). A total of 24 constructs (12 with each type of fixation) underwent biomechanical testing with 12 matched constructs undergoing uniaxial loading to failure (rate of 1 mm/sec) and the other 12 matched constructs undergoing cyclic loading (10,000 cycles at 1 Hz with a loading range of 125 to 375 N). All constructs failed by slippage of one or both ends of the anterior tibialis graft past the fixation device. One of the six Bio-Intrafix specimens failed before 10,000 cycles; four of the six Milagro specimens failed before 10,000 cycles. Bio-Intrafix, which is designed for a four-stranded graft, provided superior fixation to a traditional bioabsorbable interference screw in a two-stranded soft tissue graft at one of the weakest links in anterior cruciate ligament reconstruction surgery.

 
  • References

  • 1 Coleridge SD, Amis AA. A comparison of five tibial-fixation systems in hamstring-graft anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2004; 12 (5) 391-397
  • 2 Baer GS, Harner CD. Clinical outcomes of allograft versus autograft in anterior cruciate ligament reconstruction. Clin Sports Med 2007; 26 (4) 661-681
  • 3 Carey JL, Dunn WR, Dahm DL, Zeger SL, Spindler KP. A systematic review of anterior cruciate ligament reconstruction with autograft compared with allograft. J Bone Joint Surg Am 2009; 91 (9) 2242-2250
  • 4 Chang SK, Egami DK, Shaieb MD, Kan DM, Richardson AB. Anterior cruciate ligament reconstruction: allograft versus autograft. Arthroscopy 2003; 19 (5) 453-462
  • 5 Edgar CM, Zimmer S, Kakar S, Jones H, Schepsis AA. Prospective comparison of auto and allograft hamstring tendon constructs for ACL reconstruction. Clin Orthop Relat Res 2008; 466 (9) 2238-2246
  • 6 Marrale J, Morrissey MC, Haddad FS. A literature review of autograft and allograft anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2007; 15 (6) 690-704
  • 7 Shelton WR, Papendick L, Dukes AD. Autograft versus allograft anterior cruciate ligament reconstruction. Arthroscopy 1997; 13 (4) 446-449
  • 8 Brand Jr J, Weiler A, Caborn DN, Brown Jr CH, Johnson DL. Graft fixation in cruciate ligament reconstruction. Am J Sports Med 2000; 28 (5) 761-774
  • 9 Caborn DN, Brand Jr JC, Nyland J, Kocabey Y. A biomechanical comparison of initial soft tissue tibial fixation devices: the Intrafix versus a tapered 35-mm bioabsorbable interference screw. Am J Sports Med 2004; 32 (4) 956-961
  • 10 Starch DW, Alexander JW, Noble PC, Reddy S, Lintner DM. Multistranded hamstring tendon graft fixation with a central four-quadrant or a standard tibial interference screw for anterior cruciate ligament reconstruction. Am J Sports Med 2003; 31 (3) 338-344
  • 11 Bartz RL, Mossoni K, Tyber J, Tokish J, Gall K, Siparsky PN. A biomechanical comparison of initial fixation strength of 3 different methods of anterior cruciate ligament soft tissue graft tibial fixation: resistance to monotonic and cyclic loading. Am J Sports Med 2007; 35 (6) 949-954
  • 12 Prodromos C, Joyce B, Shi K. A meta-analysis of stability of autografts compared to allografts after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2007; 15 (7) 851-856
  • 13 Scranton Jr PE, Lanzer WL, Ferguson MS, Kirkman TR, Pflaster DS. Mechanisms of anterior cruciate ligament neovascularization and ligamentization. Arthroscopy 1998; 14 (7) 702-716
  • 14 Tomita F, Yasuda K, Mikami S, Sakai T, Yamazaki S, Tohyama H. Comparisons of intraosseous graft healing between the doubled flexor tendon graft and the bone-patellar tendon-bone graft in anterior cruciate ligament reconstruction. Arthroscopy 2001; 17 (5) 461-476
  • 15 Clancy Jr WG, Narechania RG, Rosenberg TD, Gmeiner JG, Wisnefske DD, Lange TA. Anterior and posterior cruciate ligament reconstruction in rhesus monkeys. J Bone Joint Surg Am 1981; 63 (8) 1270-1284
  • 16 Rodeo SA, Arnoczky SP, Torzilli PA, Hidaka C, Warren RF. Tendon-healing in a bone tunnel. A biomechanical and histological study in the dog. J Bone Joint Surg Am 1993; 75 (12) 1795-1803
  • 17 Noyes FR, Butler DL, Grood ES, Zernicke RF, Hefzy MS. Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J Bone Joint Surg Am 1984; 66 (3) 344-352
  • 18 Nurmi JT, Sievänen H, Kannus P, Järvinen M, Järvinen TL. Porcine tibia is a poor substitute for human cadaver tibia for evaluating interference screw fixation. Am J Sports Med 2004; 32 (3) 765-771
  • 19 Brown GA, Peña F, Grøntvedt T, Labadie D, Engebretsen L. Fixation strength of interference screw fixation in bovine, young human, and elderly human cadaver knees: influence of insertion torque, tunnel-bone block gap, and interference. Knee Surg Sports Traumatol Arthrosc 1996; 3 (4) 238-244
  • 20 Weiler A, Windhagen HJ, Raschke MJ, Laumeyer A, Hoffmann RF. Biodegradable interference screw fixation exhibits pull-out force and stiffness similar to titanium screws. Am J Sports Med 1998; 26 (1) 119-126
  • 21 Krupp R, Nyland J, Smith C, Nawab A, Burden R, Caborn DN. Biomechanical comparison between CentraLoc and Intrafix fixation of quadrupled semitendinosus-gracilis allografts in cadaveric tibiae with low bone mineral density. Knee 2007; 14 (4) 306-313
  • 22 Park DK, Fogel HA, Bhatia S , et al. Tibial fixation of anterior cruciate ligament allograft tendons: comparison of 1-, 2-, and 4-stranded constructs. Am J Sports Med 2009; 37 (8) 1531-1538
  • 23 Stadelmaier DM, Lowe WR, Ilahi OA, Noble PC, Kohl III HW. Cyclic pull-out strength of hamstring tendon graft fixation with soft tissue interference screws. Influence of screw length. Am J Sports Med 1999; 27 (6) 778-783
  • 24 Zhang AL, Lewicky YM, Oka R, Mahar A, Pedowitz R. Biomechanical analysis of femoral tunnel pull-out angles for anterior cruciate ligament reconstruction with bioabsorbable and metal interference screws. Am J Sports Med 2007; 35 (4) 637-642
  • 25 Kousa P, Järvinen TL, Vihavainen M, Kannus P, Järvinen M. The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part II: tibial site. Am J Sports Med 2003; 31 (2) 182-188
  • 26 Brand Jr JC, Nyland J, Caborn DN, Johnson DL. Soft-tissue interference fixation: bioabsorbable screw versus metal screw. Arthroscopy 2005; 21 (8) 911-916
  • 27 Johnson LL, vanDyk GE. Metal and biodegradable interference screws: comparison of failure strength. Arthroscopy 1996; 12 (4) 452-456
  • 28 Kousa P, Järvinen TL, Kannus P, Järvinen M. Initial fixation strength of bioabsorbable and titanium interference screws in anterior cruciate ligament reconstruction. Biomechanical evaluation by single cycle and cyclic loading. Am J Sports Med 2001; 29 (4) 420-425
  • 29 Caborn DN, Urban Jr WP, Johnson DL, Nyland J, Pienkowski D. Biomechanical comparison between BioScrew and titanium alloy interference screws for bone-patellar tendon-bone graft fixation in anterior cruciate ligament reconstruction. Arthroscopy 1997; 13 (2) 229-232
  • 30 Abate JA, Fadale PD, Hulstyn MJ, Walsh WR. Initial fixation strength of polylactic acid interference screws in anterior cruciate ligament reconstruction. Arthroscopy 1998; 14 (3) 278-284