Transfusionsmedizin 2012; 2(3): 132-140
DOI: 10.1055/s-0032-1314953
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Ex-vivo-Expansion von Erythrozyten – aktueller Stand

Ex-vivo Expansion of Erythrocytes – Current Status
G. Wittmann
1   Abteilung für Transfusionsmedizin, Zelltherapeutika und Hämostaseologie, Klinikum der Universität München, München
,
R. Henschler
1   Abteilung für Transfusionsmedizin, Zelltherapeutika und Hämostaseologie, Klinikum der Universität München, München
› Author Affiliations
Further Information

Publication History

Publication Date:
21 August 2012 (online)

Zusammenfassung

Die Ex-vivo-Expansion von Erythrozyten steht an der Schwelle zum klinischen Einsatz. Damit steht ein Traum der Transfusionsmedizin, Erythrozyten gezielt produzieren zu können, kurz vor der Verwirklichung. Diese Übersicht fasst die aktuellen Entwicklungen im Bereich der Physiologie der Erythropoese im Knochenmark, der Zellkulturprotokolle im Übergang vom Labormaßstab in den Bereich der Guten Herstellungspraxis (GMP), der verschiedenen Quellen für ex vivo expandierte Erythrozyten, die zurzeit verfügbaren klinischen Daten und die zukünftigen Möglichkeiten der Anwendung zusammen.

Abstract

Ex vivo expansion of erythrocyte precursors to erythrocyte concentrates is at the cusp to clinical practice. An old dream of transfusionists, the in vitro manufacturing of erythrocytes seems to come true. This review summarises the current status in the physiology of bone-marrow derived erythropoiesis, the recent protocols in erythrocyte cell culture in the transit from laboratory scale to good manufacturing practice, the different sources for the ex vivo expansion of cells for this purpose, the most recent clinical data and the prospective scope in therapeutical administration.

 
  • Literatur

  • 1 Pseudo-Apollodoros. Bibliotheca 3. 118 – 122.
  • 2 Ovid Metamorphosen. Buch 7, Vers 159 – 296
  • 3 Zimring JC, Welniak L, Semple JW et al. NHLBI Alloimmunization Working Group. Current problems and future directions of transfusion-induced alloimmunization: summary of an NHLBI working group. Transfusion 2011; 51: 435-441
  • 4 Peyrard T, Bardiaux L, Krause C et al. Banking of pluripotent adult stem cells as an unlimited source for red blood cell production: potential applications for alloimmunized patients and rare blood challenges. Transfus Med Rev 2011; 25: 206-216
  • 5 Orkin SH, Zon LI. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 2008; 132: 631-644
  • 6 Hattangadi SM, Wong P, Zhang L et al. From stem cell to red cell: regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications. Blood 2011; 118: 6258-6268
  • 7 Hattangadi SM, Burke KA, Lodish HF. Homeodomain-interacting protein kinase 2 plays an important role in normal terminal erythroid differentiation. Blood 2010; 115: 4853-4861
  • 8 Akashi K, Traver D, Miyamoto T et al. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 2000; 404: 193-197
  • 9 Chen MJ, Li Y, De Obaldia ME et al. Erythroid/myeloid progenitors and hematopoietic stem cells originate from distinct populations of endothelial cells. Cell Stem Cell 2011; 9: 541-552
  • 10 Moore MA. Review: Stratton Lecture 1990. Clinical implications of positive and negative hematopoietic stem cell regulators. Blood 1991; 78: 1-19
  • 11 Bauer A, Tronche F, Wessely O et al. The glucocorticoid receptor is required for stress erythropoiesis. Genes Dev 1999; 13: 2996-3002
  • 12 Lenox LE, Perry JM, Paulson RF. BMP4 and Madh5 regulate the erythroid response to acute anemia. Blood 2005; 105: 2741-2748
  • 13 Perry JM, Harandi OF, Paulson RF. BMP4, SCF, and hypoxia cooperatively regulate the expansion of murine stress erythroid progenitors. Blood 2007; 109: 4494-4502
  • 14 Millot S, Andrieu V, Letteron P et al. Erythropoietin stimulates spleen BMP4-dependent stress erythropoiesis and partially corrects anemia in a mouse model of generalized inflammation. Blood 2010; 116: 6072-6081
  • 15 Lodish H, Flygare J, Chou S. Critical review from stem cell to erythroblast: regulation of red cell production at multiple levels by multiple hormones. IUBMB Life 2010; 62: 492-496
  • 16 Sawada K. Guest editorial: the seven wonders of erythropoiesis. Int J Hematol 2011; 93: 1-4
  • 17 Fibach E, Manor D, Oppenheim A et al. Proliferation and maturation of human erythroid progenitors in liquid culture. Blood 1989; 73: 100-103
  • 18 Migliaccio G, Migliaccio AR, Druzin ML et al. Long-term generation of colony-forming cells in liquid culture of CD34+ cord blood cells in the presence of recombinant human stem cell factor. Blood 1992; 79: 2620-2627
  • 19 Kolbus A, Blazquez-Domingo M, Carotta S et al. Cooperative signaling between cytokine receptors and the glucocorticoid receptor in the expansion of erythroid progenitors: molecular analysis by expression profiling. Blood 2003; 102: 3136-3146
  • 20 Flygare J, Rayon Estrada V, Shin C et al. HIF-1alpha synergizes with glucocorticoids to promote BFU-E progenitor self-renewal. Blood 2011; 117: 3435-3444
  • 21 Dolznig H, Grebien F, Deiner EM et al. Erythroid progenitor renewal versus differentiation: genetic evidence for cell autonomous, essential functions of EpoR, Stat5 and the GR. Oncogene 2006; 25: 2890-2900
  • 22 Migliaccio G, Masiello F, Tirelli V et al. Under HEMA conditions, self-replication of human erythroblasts is limited by autophagic death. Blood Cells Mol Dis 2011; 7: 182-197
  • 23 Chung J, Chen C, Paw BH. Review: Heme metabolism and erythropoiesis. Curr Opin Hematol 2012; 19: 156-162
  • 24 Camaschella C, Pagani A. Iron and erythropoiesis: a dual relationship. Int J Hematol 2011; 93: 21-26
  • 25 Wilson JG, Tavassoli M. Microenvironmental factors involved in the establishment of erythropoiesis in bone marrow. Ann NY Acad Sci 1994; 718: 271-284
  • 26 Esehghi S, Vogelezang MG, Hynes RO et al. Alpha4beta1 integrin and erythropoietin mediate temporally distinct steps in erythropoiesis: integrins in red cell development. J Cell Biol 2007; 177: 871-880
  • 27 Chasis JA, Mohandas N. Erythroblastic islands: niches for erythropoiesis. Blood 2008; 112: 470-478
  • 28 Miharada K, Hiroyama T, Sudo K et al. Efficient enucleation of erythroblasts differentiated in vitro from hematopoietic stem and progenitor cells. Nat Biotechnol 2006; 24: 1255-1256
  • 29 Giarratana MC, Kobari L, Lapillonne H et al. Ex vivo generation of fully mature human red blood cells from hematopoietic stem cells. Nat Biotechnol 2005; 23: 69-74
  • 30 Neildez-Nguyen TM, Wajcman H, Marden MC et al. Human erythroid cells produced ex vivo at large scale differentiate into red blood cells in vivo. Nat Biotechnol 2002; 20: 467-472
  • 31 Fujimi A, Matsunaga T, Kobune M et al. Ex vivo large-scale generation of human red blood cells from cord blood CD34+ cells by co-culturing with macrophages. Int J Hematol 2008; 87: 339-350
  • 32 Nakamura Y. In vitro production of transfusable red blood cells. Biotechnol Genet Eng Rev 2008; 25: 187-201
  • 33 Migliaccio G, Di Pietro R, di Giacomo V et al. In vitro mass production of human erythroid cells from the blood of normal donors and of thalassemic patients. Blood Cells Mol Dis 2002; 28: 169-180
  • 34 Giarratana MC, Rouard H, Dumont A et al. Proof of principle for transfusion of in vitro-generated red blood cells. Blood 2011; 118: 5071-5079
  • 35 Timmins NE, Athanasas ST, Günther M et al. Ultra-high-yield manufacture of red blood cells from hematopoietic stem cells tissue. Eng Part C Methods 2011; 17: 1131-1137
  • 36 Migliaccio AR, Whitsett C, Papayannopoulou T et al. The potential of stem cells as an in vitro source of red blood cells for transfusion. Cell Stem Cell 2012; 10: 115-119
  • 37 Chang AH, Stephan MT, Sadelain M. Stem cell-derived erythroid cells mediate long-term systemic protein delivery. Nat Biotechnol 2006; 24: 1017-1021
  • 38 Thomson JA, Itskovitz-Eldor J, Shapiro SS et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282: 1145-1147
  • 39 Kennedy M, Keller GM. Hematopoietic commitment of ES cells in culture. Methods Enzymol 2003; 365: 39-59
  • 40 Hiroyama T, Miharada K, Sudo K et al. Establishment of mouse embryonic stem cell-derived erythroid progenitor cell lines able to produce functional red blood cells. PLoS One 2008; 3: e1544
  • 41 Ma F, Ebihara Y, Umeda K et al. Generation of functional erythrocytes from human embryonic stem cell-derived definitive hematopoiesis. Proc Natl Acad Sci USA 2008; 105: 13087-13092
  • 42 Chang KH, Nelson AM, Cao H et al. Definitive-like erythroid cells derived from human embryonic stem cells coexpress high levels of embryonic and fetal globins with little or no adult globin. Blood 2006; 108: 1515-1523
  • 43 Qiu C, Olivier EN, Velho M et al. Globin switches in yolk sac-like primitive and fetal-like definitive red blood cells produced from human embryonic stem cells. Blood 2008; 111: 2400-2408
  • 44 Lu SJ, Feng Q, Park JS et al. Biologic properties and enucleation of red blood cells from human embryonic stem cells. Blood 2008; 112: 4475-4484
  • 45 Yu C, Liu Y, Miao Z et al. Retinoic acid enhances the generation of hematopoietic progenitors from human embryonic stem cell-derived hemato-vascular precursors. Blood 2010; 116: 4786-4794
  • 46 Lynch MR, Gasson JC, Paz H. Modified ES/OP9 co-culture protocol provides enhanced characterization of hematopoietic progeny. J Vis Exp published online 07.06.2011; (52). pii: 2559. DOI: 10.3791/2559.
  • 47 Ramos-Mejía V, Fernández AF, Ayllón V et al. Maintenance of human embryonic stem cells in mesenchymal stem cell-conditioned media augments hematopoietic specification. Stem Cells Dev 2012; 10 21 (9) 1549-1558 Epub 2011 Oct 27
  • 48 Niwa A, Heike T, Umeda K et al. A novel serum-free monolayer culture for orderly hematopoietic differentiation of human pluripotent cells via mesodermal progenitors. PLoS One 2011; 6: e22261
  • 49 Carotta S, Pilat S, Mairhofer A et al. Directed differentiation and mass cultivation of pure erythroid progenitors from mouse embryonic stem cells. Blood 2004; 104: 1873-1880
  • 50 Hatzistavrou T, Micallef SJ, Ng ES et al. ErythRED, a hESC line enabling identification of erythroid cells. Nat Methods 2009; 6: 659-662
  • 51 Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663-676
  • 52 Yu J, Vodyanik MA, Smuga-Otto K et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318: 1917-1920
  • 53 Choi KD, Yu J, Smuga-Otto K et al. Hematopoietic and endothelial differentiation of human induced pluripotent stem cells. Stem Cells 2009; 27: 559-567
  • 54 Choi KD, Vodyanik MA, Slukvin II. Generation of mature human myelomonocytic cells through expansion and differentiation of pluripotent stem cell-derived lin-CD34+CD43+CD45+ progenitors. J Clin Invest 2009; 119: 2818-2829
  • 55 Lengerke C, Grauer M, Niebuhr NI et al. Hematopoietic development from human induced pluripotent stem cells. Ann NY Acad Sci 2009; 1176: 219-227
  • 56 Lapillonne H, Kobari L, Mazurier C et al. Red blood cell generation from human induced pluripotent stem cells: perspectives for transfusion medicine. Haematologica 2010; 95: 1651-1659
  • 57 Papapetrou EP, Lee G, Malani N et al. Genomic safe harbors permit high b-globin transgene expression in thalassemia induced pluripotent stem cells. Nat Biotechnol 2011; 29: 73-78
  • 58 Mazurier C, Douay L, Lapillonne H. Red blood cells from induced pluripotent stem cells: hurdles and developments. Curr Opin Hematol 2011; 18: 249-253
  • 59 Takayama N, Eto K. Pluripotent stem cells reveal the developmental biology of human megakaryocytes and provide a source of platelets for clinical application. Cell Mol Life Sci 24.04.2012; [Epub ahead of print] DOI: 10.1007/s00018-012-0995-4.
  • 60 Chang CJ, Mitra K, Koya M et al. Production of embryonic and fetal-like red blood cells from human induced pluripotent stem cells. PLoS One 2011; 6: e25761
  • 61 Szabo E, Rampalli S, Risueno RM et al. Direct conversion of human fibroblasts to multilineage blood progenitors. Nature 2010; 468: 521-526
  • 62 Chaurasia P, Berenzon D, Hoffman R. Chromatin-modifying agents promote the ex vivo production of functional human erythroid progenitor cells. Blood 2011; 117: 4632-4641
  • 63 Wong P, Hattangadi SM, Cheng AW et al. Gene induction and repression during terminal erythropoiesis are mediated by distinct epigenetic changes. Blood 2011; 118: 128-138
  • 64 Wu W, Cheng Y, Keller CA et al. Dynamics of the epigenetic landscape during erythroid differentiation after GATA1 restoration. Genome Res 2011; 21: 1659-1671
  • 65 Bönig H, Chang KH, Geisen C et al. Blood types of current embryonic stem cell lines are not conducive to culturing “universal-donor” red blood cells. Transfusion 2008; 48: 1039-1040
  • 66 Cherry ABC, Daley GQ. Reprogramming cellular identity for regenerative medicine. Cell 2012; 148: 1110-1122
  • 67 Douay L. In vitro generation of red blood cells for transfusion: a model for regenerative medicine. Regen Med 2012; 7: 1-2
  • 68 Reesink HW, Engelfriet CP, Schennach H et al. Donors with a rare pheno (geno) type. Vox Sangs 2008; 95: 236-253
  • 69 Muzykantov VR. Drug delivery by red blood cells: vascular carriers designed by mother nature. Expert Opin Drug Deliv 2010; 7: 403-427