Synthesis 2013; 45(1): 85-92
DOI: 10.1055/s-0032-1316828
paper
© Georg Thieme Verlag Stuttgart · New York

Efficient Synthesis of Imidazole-Fused Benzodiazepines Using Palladium-Catalyzed­ Intramolecular C–N Bond Formation Reaction

Sudipta Mitra
Department of Chemistry, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, India   Fax: +91(33)24735197   eMail: partha@iicb.res.in
,
Heena Darira
Department of Chemistry, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, India   Fax: +91(33)24735197   eMail: partha@iicb.res.in
,
Partha Chattopadhyay*
Department of Chemistry, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, India   Fax: +91(33)24735197   eMail: partha@iicb.res.in
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 07. November 2012

Accepted after revision: 26. November 2012

Publikationsdatum:
06. Dezember 2012 (online)

 


Abstract

An efficient three-step synthetic route to imidazole-fused benzodiazepines from imidazole-2-carbaldehyde is described. Application of intramolecular Buchwald–Hartwig cycloamination reaction in the final step is shown to be a convenient method for the synthesis of fused seven-membered diazacycles. The reactions proceeded smoothly with both aliphatic and aromatic amines.


#

There is a growing interest over the past few years in the synthesis of nitrogen containing heterocycle-fused benzazepines and benzodiazepines due to their crucial role as main structural motif in many pharmacologically active molecules. The clinical importance and commercial success associated with the benzodiazepine class of central nervous system (CNS)-active agents and the utility of 1,4-diazepines as peptidomimetic scaffolds have led the medicinal chemists to recognize them as privileged structures. Particularly, imidazobenzodiazepines[ 1 ] and related ligands interact selectively for a neuro-inhibitory, postsynaptic GABAA receptor[1f] [g] with high affinity. Accordingly, they may act as agonists, partial agonists,[ 1b ] and antagonists. The therapeutic applications of benzodiazepines include anxiolytics,[ 2 ] antiarrhythmics,[ 3 ] vasopressin antagonists,[ 4 ] and cholecystokinin antagonists.[ 5 ] Some of the benzodiazepines such as arfendazam, lofendazam,[ 6 ] triflubazam,[ 7 ] and clobazam exhibit a wide range of biological activities while others like telenzepine act as antisecretory agents.[ 8 ] Recently, several compounds have been formally licensed for clinical use (e.g., Nevirapine) and others are at the preclinical and/or clinical development stage (e.g., Tivirapine and UK-129 485[ 9 ]). Tetrahydroimidazo[4,5,1-jk][l,4]benzodiazepin-2(1H)-thione, assigned the acronym TIBO,[1d] [e] is the first member of a series of potent selective and noncompetitive inhibitors of HIV-l reverse transcriptase.

Despite the immense importance of imidazobenzodiazepines, only a few groups[ 1 ] have reported their synthesis. These methods either require lengthy sequence of reactions or harsh reaction conditions. For quite some time, we have been engaged in the synthesis of several benzannulated and dibenzannulated medium ring heterocycles employing palladium-catalyzed intramolecular C–N bond forming cyclization reaction.[10] [11] [12] The copper- or palladium-catalyzed intramolecular Buchwald–Hartwig aryl amination reaction[ 13 ] appeared particularly suitable for this purpose. In continuation of these efforts, we became interested in applying this method in the synthesis of imidazole-fused benzodiazepines. To the best of our knowledge no other group has reported the synthesis of this important synthetic target using this method.

The requisite starting materials 3ac were prepared in good to excellent yields by reaction between imidazole-2-carbaldehyde (1) and either 2-bromobenzyl bromide (2a) or substituted 2-bromobenzyl bromides 2b,c in the presence of anhydrous potassium carbonate in anhydrous DMF at room temperature (Table 1).

Table 1 Synthesis of N-Benzylated Imidazo-2-carbaldehydesa

Entry

R1

R2

Benzyl bromide

Product

Time (h)

Yield (%)b

1

H

H

2a

3a

16

95

2

OCH2O

2b

3b

17

92

3

OMe

H

2c

3c

16

94

a Reaction conditions: imidazole-2-carbaldehyde (1 equiv), 2-bromobenzyl bromide (1.2 equiv), K2CO3 (2 equiv), anhyd DMF (5 mL/mmol), r.t., 16–17 h.

b Isolated yield.

Imine formation with aliphatic and aromatic amines and subsequent NaBH4 reduction in ethanol afforded the desired amine precursors 4al in good yields (Table 2).

Table 2 Synthesis of Imidazo N-Alkylated Amines 4al a

Entry

R1

R2

R3

Product

Yield (%)b

1

H

H

Ph

4a

72

2

H

H

i-Pr

4b

70

3

H

H

4c

73

4

OMe

H

i-Pr

4d

77

5

OMe

H

Ph

4e

75

6

OMe

H

Bn

4f

74

7

OMe

H

4g

71

8

OCH2O

i-Pr

4h

69

9

OCH2O

Bn

4i

68

10

OCH2O

Ph

4j

71

11

OCH2O

4-MeOC6H4

4k

75

12

OCH2O

4l

73

a Reaction conditions: 1) N-benzylated imidazole-2-carbaldehyde (1 equiv), amines (1.5 equiv), EtOH (10 mL/mmol), r.t., 12 h. 2) NaBH4 (2.5 equiv), EtOH (20 mL/mmol), 0 °C, 2–3 h.

b Isolated yield.

The amine precursor 4a was then used as model substrate for the optimization of intramolecular cycloamination reaction. Initially with the conditions used by Buchwald[ 13a ] (Table 3, entry 1) no desired product was obtained and the starting material 4a was recovered. Changing the catalyst to Pd2(dba)3 or Pd(OAc)2 also failed to afford the desired product in the absence of a ligand (entries 2, 3). The reaction did take place in the presence of a ligand, with Pd2(dba)3 proving superior to Pd(OAc)2 at equivalent (10 mol% Pd) catalyst loading (entries 4–7), but the yield was still low (58%). Then, the Pd loading was varied from 6 to 40 mol% using Pd2(dba)3 as Pd source, which improved the yield to 73% at 20% Pd loading (entry 9). Changing the base to Cs2CO3, using other monodentate (tri-o-tolylphosphine) or bidentate (DPPF) ligands and employing different solvents (DME or 1,4-dioxane) proved less satisfactory (entries 12–16).

Table 3 Optimization of the Cycloamination Reaction of 4a

Entry

Reaction conditions

Pd (mol%)a

Yield (%)b

1

Pd(PPh3)4, K2CO3, toluene, reflux, 16 h

10

c

2

Pd2(dba)3, K2CO3, DMF, 120 °C, 17 h

10

c

3

Pd(OAc)2, K2CO3, DMF, 120 °C, 16 h

10

c

4

Pd(OAc)2, (o-tol)3P, t-BuOK, toluene, reflux, 18 h

10

20

5

Pd(OAc)2, DPPF, K2CO3, toluene, reflux, 17 h

10

22

6

Pd(OAc)2, DPPF, t-BuOK, toluene, reflux, 18 h

10

30

7

Pd2(dba)3, (±)-BINAP, t-BuOK, toluene, reflux­, 16 h

10

58

8

Pd2(dba)3, (±)-BINAP, t-BuOK, toluene, reflux­, 17 h

6

43

9

Pd2(dba)3, (±)-BINAP, t-BuOK, toluene, reflux­, 16 h

20

73d

10

Pd2(dba)3, (±)-BINAP, t-BuOK, toluene, reflux­, 17 h

30

70

11

Pd2(dba)3, (±)-BINAP, t-BuOK, toluene, reflux­, 17 h

40

67

12

Pd2(dba)3, (±)-BINAP, t-BuOK, DME, reflux­, 17 h

20

35

13

Pd2(dba)3, (±)-BINAP, t-BuOK, 1,4-dioxane, reflux, 17 h

20

43

14

Pd2(dba)3, (±)-BINAP, Cs2CO3, toluene, reflux­, 17 h

20

35

15

Pd2(dba)3, (o-tol)3P, t-BuOK, toluene, reflux­, 18 h

20

30

16

Pd2(dba)3, DPPF, t-BuOK, toluene, reflux, 18 h

20

56

a Pd (10 mol%) refers to Pd2(dba)3 (5 mol%), Pd(OAc)2 (10 mol%), and Pd(PPh3)4 (10 mol%).

b Isolated yield.

c No desired product was isolated.

d Optimized reaction conditions: 4a (1 equiv), Pd2(dba)3 (10 mol%; 20 mol% in Pd), (±)-BINAP (10 mol%), t-BuOK (2 equiv), toluene (10 mL/mmol), reflux.

Use of copper catalyst (CuI, 5 mol%) and t-BuOK (2 equiv) with different ligands [1,10-phenanthroline or (±)-trans-1,2-cyclohexanediamine or N,N′-dimethylethylenediamine, 10 mol%] and solvents like DMF (at 120 °C) or toluene (reflux) also did not lead to the desired cyclic product.

The optimized protocol for the palladium-catalyzed intramolecular aryl amination of 4a thus employs Pd2(dba)3 (10 mol%) as catalyst, (±)-BINAP (10 mol%) as ligand, t-BuOK (2 equiv) as base, and toluene as solvent at reflux to furnish 5a. Employing these conditions, other substrates 4bl were treated to afford 5bl in 63–76% yield (Table 4). A probable mechanism[13b] [c] [14] of intramolecular aryl amination for the synthesis of benzodiazepines is outlined in Scheme [1].

Zoom Image
Scheme 1 Proposed mechanism for the synthesis of imidazobenzodiazepine

Table 4 Synthesis of Imidazobenzodiazepines 5bl a

Entry

Substrate

Product

Time (h)

Yield (%)a

1

4b

5b

18

68

2

4c

5c

17

65

3

4d

5d

16

71

4

4e

5e

18

68

5

4f

5f

15

76

6

4g

5g

14

72

7

4h

5h

16

70

8

4i

5i

18

75

9

4j

5j

15

74

10

4k

5k

17

67

11

4l

5l

16

63

a Isolated yield.

The assigned structures of 5bl were determined on the basis of their IR, 1H NMR, 13C NMR, mass spectra, and elemental analysis. The 1H NMR spectrum of 5a consisted of two singlets at δ = 4.95 and 4.86 for the benzylic methylene protons and methylene protons attached to nitrogen of the aniline moiety, along with signals for eleven aromatic protons (δ = 6.77–7.42). The 13C NMR spectrum showed signals assignable to 17 carbons in agreement with the structure. The mass spectrum displayed a peak at m/z 262 for the [M + H]+ ion. The features of the 1H and 13C NMR spectra of compounds 5bl were broadly similar to those of 5a, except for the signals for the aromatic moieties and the alkyl/aryl groups, which exhibited the expected changes in signal patterns.

The present strategy thus establishes transition-metal-catalyzed­ cycloamination as a suitable synthetic tool for the preparation of imidazole-fused benzodiazepine. But it could not be extended to the synthesis of pyrrole-fused benzodiazepines.

In summary, we have established a straightforward efficient three-step synthetic route to imidazole-fused seven-membered diazacycles from imidazole-2-carbaldehyde using palladium-catalyzed intramolecular cycloamination reaction as the key step. Development of new analogues of benzodiazepines is highly desirable as this may lead to a promising antidepressant drug. This finding opens up the possibility of obtaining synthetically challenging imidazole­-fused seven-membered benzoheterocycles.

Reactions at r.t. imply a temperature of 25 °C. Required reagents were obtained from commercial sources and used without purification. The solvents used were of technical grade, and freshly distilled prior to use. All melting points were obtained on a laboratory melting point bath and are uncorrected. 1H (300 MHz, 600 MHz) and 13C (75 MHz, 150 MHz) NMR spectra were recorded using CDCl3 as solvent and TMS as internal standard on Bruker DPX 300 MHz and Bruker DRX 600 MHz NMR instruments. Chemical shifts are stated in parts per million in δ scales. IR spectra were recorded on a Jasco­-FTIR Model-410 using KBr pellets or in neat condition. Mass spectra were measured in ESIMS (+) or EIMS mode. DI-EIMS were recorded on a Shimadzu GCMS (model no QP5050A) and ESIMS­ were done on a Waters Micromass Q-TOF microTM mass spectrometer. TLC was performed on precoated plates (0.25 nm, silica gel 60 F254). Petroleum ether (PE) used refers to the fraction boiling in the 60–80 °C range. 


#

1-(2-Bromobenzyl)-1H-imidazole-2-carbaldehydes 3a–c; General Procedure

To a stirred solution of imidazole-2-carbaldehyde (1; 0.5 g, 5.2 mmol) in anhyd DMF (20 mL) was added K2CO3 (1.4 g, 10.41 mmol) and the mixture was stirred at r.t. for 30 min. Thereafter, the appropriate 2-bromobenzyl bromide 2 (6.25 mmol, 1.2 equiv) was added and the stirring was continued for about 16–17 h at r.t. On completion of the reaction as monitored by TLC (eluent: PE–EtOAc­, 1:1), the solution was poured into H2O (70 mL), and extracted with EtOAc (4 × 30 mL). The combined organic layers were washed with H2O (40 mL), followed by brine (30 mL), dried (Na2SO4), filtered, and the solvent was evaporated in vacuo. The crude product was purified via column chromatography over neutral alumina (EtOAc–PE, 1:9) to give 3ac.


#

1-(2-Bromobenzyl)-1H-imidazole-2-carbaldehyde (3a)

Yield: 1.30 g (95%); yellow solid; mp 80–82 °C; Rf = 0.55 (PE–EtOAc, 3:2).

IR (KBr): 2846, 1678, 1465, 1411, 1337, 1294, 1244, 1155, 1024, 774, 664 cm–1.

1H NMR (300 MHz, CDCl3): δ = 5.73 (s, 2 H), 6.91 (d, J = 6.9 Hz, 1 H), 7.15 (s, 1 H), 7.18–7.30 (m, 2 H), 7.32 (s, 1 H), 7.61 (d, J = 7.5 Hz, 1 H), 9.87 (s, 1 H).

13C NMR (75 MHz, CDCl3): δ = 50.8 (CH2), 123.2 (C), 126.2 (CH), 128.0 (CH), 129.1 (CH), 129.9 (CH), 131.9 (CH), 133.1 (CH), 135.2 (C), 143.4 (C), 182.1 (CHO).

MS (ESI): m/z = 265, 267 ([M + H+] for 79Br and 81Br), 287, 289 ([M + Na+] for 79Br and 81Br).

Anal. Calcd for C11H9BrN2O: C, 49.84; H, 3.42; N, 10.57. Found: C, 49.64; H, 3.47; N, 10.67.


#

1-(2-Bromo-4,5-methylenedioxybenzyl)-1H-imidazole-2-carbaldehyde (3b)

Yield: 1.47 g (92%); white solid; mp 84–86 °C; Rf = 0.65 (PE–EtOAc­, 3:7).

IR (KBr): 2908, 2842, 1681, 1626, 1478, 1412, 1249, 1110, 1036, 929, 858, 763, 681, 521 cm–1.

1H NMR (300 MHz, CDCl3): δ = 5.64 (s, 2 H), 5.99 (s, 2 H), 6.54 (s, 1 H), 7.05 (s, 1 H), 7.20 (s, 1 H), 7.31 (s, 1 H), 9.87 (s, 1 H).

13C NMR (75 MHz, CDCl3): δ = 50.4 (CH2), 102.0 (CH2), 109.3 (CH), 112.9 (CH), 114.1 (C), 125.9 (CH), 128.1 (C), 131.9 (CH), 143.1 (C), 147.9 (C), 148.5 (C), 182.2 (CH).

MS (ESI): m/z = 309, 311 ([M + H+] for 79Br and 81Br), 331, 333 ([M + Na+] for 79Br and 81Br).

Anal. Calcd for C12H9BrN2O3: C, 46.63; H, 2.93; N, 9.06. Found: C, 46.85; H, 2.88; N, 9.18.


#

1-(2-Bromo-5-methoxybenzyl)-1H-imidazole-2-carbaldehyde (3c)

Yield: 1.48 g (94%); white solid; mp 78–80 °C; Rf = 0.65 (PE–EtOAc­, 2:3).

IR (KBr): 2863, 1683, 1569, 1476, 1412, 1339, 1259, 1159, 1044, 1018, 919, 879, 805, 745, 598 cm–1.

1H NMR (300 MHz, CDCl3): δ = 3.70 (s, 3 H), 5.67 (s, 2 H), 6.48 (d, J = 3.0 Hz, 1 H), 6.73 (dd, J = 3.0 Hz, 8.7 Hz, 1 H), 7.17 (s, 1 H), 7.30 (s, 1 H), 7.47 (d, J = 8.7 Hz, 1 H), 9.85 (s, 1 H).

13C NMR (75 MHz, CDCl3): δ = 50.7 (CH2), 55.4 (OCH3), 113.4 (C), 115.2 (2 CH), 126.2 (CH), 131.9 (CH), 133.7 (CH), 136.1 (C), 143.3 (C), 159.4 (C), 182.1 (CHO).

MS (ESI): m/z = 295, 297 ([M + H+] for 79Br and 81Br).

Anal. Calcd for C12H11BrN2O2: C, 48.84; H, 3.76; N, 9.49. Found: C, 48.64; H, 3.80; N, 9.59.


#

1-(2-Bromobenzyl)-2-(phenylaminomethyl)-1H-imidazoles 4a–l; General Procedure

To an ethanolic solution (20 mL) of 3ac (0.85–1.89 mmol, 1 equiv) was added the respective alkyl/aryl amine (1.27–2.83 mmol, 1.5 equiv) and the reaction mixture was stirred at r.t. for 12 h. After cooling to 0 °C, NaBH4 (2.12–4.72 mmol, 2.5 equiv) was added portionwise and the mixture was stirred for 2–3 h. On completion of the reaction as monitored by TLC (eluent: EtOAc), the solvent was removed under vacuum. The mixture was extracted with EtOAc (2 × 20 mL), and the combined organic extracts were washed with sat. aq NaHCO3 (25 mL) and H2O (2 × 20 mL), dried (Na2SO4), filtered, and concentrated. The crude residue was purified by column chromatography over neutral alumina (EtOAc–PE, 3:1) to afford the compounds 4al.


#

1-(2-Bromobenzyl)-2-(phenylaminomethyl)-1H-imidazole (4a)

Yield: 0.22 g (72%); brownish sticky mass; Rf = 0.38 (PE–EtOAc, 1:1).

IR (neat): 2923, 1685, 1601, 1501, 1436, 1315, 1262, 1216, 1105, 1026, 752 cm–1.

1H NMR (300 MHz, CDCl3): δ = 4.30 (s, 2 H), 5.24 (s, 2 H), 6.64–6.76 (m, 4 H), 6.89 (s, 1 H), 7.08 (s, 1 H), 7.14–7.26 (m, 4 H), 7.60 (d, J = 6.0 Hz, 1 H).

13C NMR (75 MHz, CDCl3): δ = 41.1 (CH2), 49.7 (CH2), 113.2 (2 CH), 118.2 (CH), 121.0 (CH), 122.5 (C), 127.7 (CH), 128.0 (CH), 128.1 (CH), 129.2 (2 CH), 129.7 (CH) 133.1 (CH), 135.3 (C), 145.4 (C), 147.4 (C).

MS (ESI): m/z = 342, 344 ([M + H+] for 79Br and 81Br).

Anal. Calcd for C17H16BrN3: C, 59.66; H, 4.71; N, 12.28. Found: C, 59.86; H, 4.75; N, 12.18.


#

1-(2-Bromobenzyl)-2-(isopropylaminomethyl)-1H-imidazole (4b)

Yield: 0.35 g (70%); yellowish sticky mass; Rf = 0.27 (PE–EtOAc, 3:7).

IR (neat): 2964, 2866, 1685, 1643, 1469, 1441, 1346, 1279, 1165, 1117, 1027, 747, 665 cm–1.

1H NMR (300 MHz, CDCl3): δ = 1.02 (d, J = 6.3 Hz, 6 H), 2.76–2.84 (m, 1 H), 3.78 (s, 2 H), 5.30 (s, 2 H), 6.68 (d, J = 6.9 Hz, 1 H), 6.86 (s, 1 H), 7.02 (s, 1 H), 7.09–7.33 (m, 2 H), 7.59 (d, J = 7.8 Hz, 1 H).

13C NMR (75 MHz, CDCl3): δ = 22.6 (2 CH3), 43.3 (CH2), 48.4 (CH), 49.6 (CH2), 120.6 (CH), 122.3 (C), 127.5 (CH), 127.9 (2 CH), 129.4 (CH) 132.8 (CH), 136.0 (C), 146.8 (C).

MS (ESI): m/z = 308, 310 ([M + H+] for 79Br and 81Br).

Anal. Calcd for C14H18BrN3: C, 54.56; H, 5.89; N, 13.63. Found: C, 54.77; H, 5.86; N, 13.73.


#

1-(2-Bromobenzyl)-2-(3,4- methylenedioxybenzylaminomethyl)-1H-imidazole (4c)

Yield: 0.25 g (73%); yellowish sticky mass; Rf = 0.30 (PE–EtOAc, 3:7).

IR (neat): 2956, 2860, 1409, 1305, 1161, 1011, 846, 510 cm–1.

1H NMR (300 MHz, CDCl3): δ = 3.69 (s, 2 H), 3.80 (s, 2 H), 5.92 (s, 2 H), 6.64–6.75 (m, 4 H), 6.86 (s, 1 H), 7.03 (s, 2 H), 7.14–7.23 (m, 3 H), 7.60 (dd, J = 1.2, 6.6 Hz, 1 H).

13C NMR (75 MHz, CDCl3): δ = 45.0 (CH2), 49.6 (CH2), 53.2 (CH2), 100.8 (CH2), 108.0 (CH), 108.6 (CH), 120.6 (CH), 121.2 (CH), 122.3 (C), 127.7 (CH), 127.9 (2 CH), 129.3 (CH), 132.8 (CH), 133.6 (C), 136.1 (C), 146.5 (C), 146.6 (C), 147.6 (C).

MS (ESI): m/z = 400, 402 ([M + H+] for 79Br and 81Br).

Anal. Calcd for C19H18BrN3O2: C, 57.01; H, 4.53; N, 10.50. Found: C, 57.22; H, 4.58; N, 10.50.


#

1-(2-Bromo-5-methoxybenzyl)-2-(isopropylaminomethyl)-1H-imidazole (4d)

Yield: 0.24 g (77%); yellowish sticky mass; Rf = 0.35 (EtOAc).

IR (neat): 2962, 1593, 1470, 1375, 1288, 1238, 1164, 1118, 1056, 1018, 925, 856, 809, 734 cm–1.

1H NMR (300 MHz, CDCl3): δ = 1.03 (d, J = 6.0 Hz, 6 H), 2.77–2.83 (m, 1 H), 3.67 (s, 3 H), 3.78 (s, 2 H), 5.25 (s, 2 H), 6.25 (s, 1 H), 6.70–6.73 (dd, J = 2.4, 8.7 Hz, 1 H), 6.87 (s, 1 H), 7.02 (s, 1 H), 7.47 (d, J = 8.7 Hz, 1 H).

13C NMR (75 MHz, CDCl3): δ = 22.6 (2 CH3), 43.5 (CH2), 48.5 (CH), 49.5 (CH2), 55.3 (OCH3), 112.4 (C), 113.9 (CH), 114.6 (CH), 120.5 (CH), 127.6 (CH), 133.4 (CH) 137.1 (C), 146.9 (C), 159.4 (C).

MS (ESI): m/z = 338, 340 ([M + H+] for 79Br and 81Br), 360, 362 ([M + Na+] for 79Br and 81Br).

Anal. Calcd for C15H20BrN3O: C, 53.26; H, 5.96; N, 12.42. Found: C, 53.48; H, 5.92; N, 12.56.


#

1-(2-Bromo-5-methoxybenzyl)-2-(phenylaminomethyl)-1H-imidazole (4e)

Yield: 0.33 g (75%); white solid; Rf = 0.58 (PE–EtOAc, 2:3).

IR (KBr): 2927, 2845, 1688, 1600, 1471, 1286, 1160, 1056, 1019, 924, 865, 810, 748 cm–1.

1H NMR (300 MHz, CDCl3): δ = 3.59 (s, 3 H), 4.23 (s, 2 H), 5.19 (s, 2 H), 6.19 (d, J = 3.0 Hz, 1 H), 6.64–6.78 (m, 4 H), 6.90 (s, 1 H), 7.08–7.18 (m, 3 H), 7.45 (d, J = 8.7 Hz, 1 H).

13C NMR (75 MHz, CDCl3): δ = 41.2 (CH2), 49.7 (CH2), 55.3 (OCH3), 112.4 (C), 113.2 (2 CH), 113.9 (CH), 115.0 (CH), 118.1 (CH), 121.0 (CH), 128.0 (CH), 129.2 (2 CH), 133.6 (CH), 136.4 (C), 145.4 (C), 147.5 (C), 159.5 (C).

MS (ESI): m/z = 372, 374 ([M + H+] for 79Br and 81Br), 394, 396 ([M + Na+] for 79Br and 81Br).

Anal. Calcd for C18H18BrN3O: C, 58.08; H, 4.87; N, 11.29. Found: C, 58.28; H, 4.90; N, 11.40.


#

1-(2-Bromo-5-methoxybenzyl)-2-(benzylaminomethyl)-1H-imidazole (4f)

Yield: 0.36 g (74%); yellowish sticky mass; Rf = 0.4 (EtOAc).

IR (neat): 2934, 2838, 1645, 1594, 1469, 1350, 1288, 1239, 1161, 1020, 738, 699 cm–1.

1H NMR (300 MHz, CDCl3): δ = 3.63 (s, 3 H), 3.79 (s, 2 H), 3.81 (s, 2 H), 5.23 (s, 2 H), 6.24 (d, J = 3.0 Hz, 1 H), 6.69 (dd, J = 3.0, 8.7 Hz, 1 H), 6.86 (d, J = 1.2 Hz, 1 H), 7.02 (d, J = 1.2 Hz, 1 H), 7.22–7.26 (m, 5 H), 7.46 (d, J = 9.0 Hz, 1 H).

13C NMR (75 MHz, CDCl3): δ = 44.9 (CH2), 49.4 (CH2), 53.1 (CH2), 55.1 (OCH3), 112.2 (C), 113.8 (CH), 114.3 (CH), 120.4 (CH), 126.7 (CH), 127.4 (CH), 128.0 (2 CH), 128.1 (2 CH), 133.2 (CH), 136.9 (C), 139.4 (C), 146.3 (C), 159.2 (C).

MS (ESI): m/z = 386, 388 ([M + H+] for 79Br and 81Br), 408, 410 ([M + Na+] for 79Br and 81Br).

Anal. Calcd for C19H20BrN3O: C, 59.08; H, 5.22; N, 10.88. Found: C, 59.28; H, 5.19; N, 10.98.


#

1-(2-Bromo-5-methoxybenzyl)-2-(3,4-methylenedioxybenzylaminomethyl)-1H-imidazole (4g)

Yield: 0.32 g (71%); pale brownish sticky mass; Rf = 0.26 (EtOAc).

IR (neat): 2928, 1720, 1597, 1480, 1245, 1121, 1040, 930, 809, 739 cm–1.

1H NMR (300 MHz, CDCl3): δ = 3.65 (s, 3 H), 3.70 (s, 2 H), 3.80 (s, 2 H), 5.22 (s, 2 H), 5.92 (s, 2 H), 6.23 (d, J = 3.0 Hz, 1 H), 6.69–6.73 (m, 3 H), 6.79 (s, 1 H), 6.87 (d, J = 0.9 Hz, 1 H), 7.03 (d, J = 0.9 Hz, 1 H), 7.46 (d, J = 8.7 Hz, 1 H).

13C NMR (75 MHz, CDCl3): δ = 45.0 (CH2), 49.6 (CH2), 53.2 (CH2), 55.3 (CH3), 100.8 (CH2), 108.0 (CH), 108.6 (CH), 112.4 (C), 114.0 (CH), 114.5 (CH), 120.6 (CH), 121.2 (CH), 127.7 (CH), 133.4 (CH), 133.6 (C), 137.1 (C), 146.5 (C), 146.6 (C), 147.6 (C), 159.4 (C).

MS (ESI): m/z = 430, 432 ([M + H+] for 79Br and 81Br), 452, 454 ([M + Na+] for 79Br and 81Br).

Anal. Calcd for C20H20BrN3O3: C, 55.83; H, 4.68; N, 9.77. Found: C, 54.63; H, 4.64; N, 9.90.


#

1-(2-Bromo-4,5-methylenedioxybenzyl)-2-(isopropylaminomethyl)-1H-imidazole (4h)

Yield: 0.46 g (69%); pale yellowish sticky mass; Rf = 0.28 (PE–EtOAc, 3:7).

IR (neat): 3263, 2963, 2909, 1683, 1488, 1374, 1243, 1162, 1109, 1034, 929, 847, 733, 509 cm–1.

1H NMR (300 MHz, CDCl3): δ = 1.06 (d, J = 6.3 Hz, 6 H), 2.79–2.87 (m, 1 H), 3.80 (s, 2 H), 5.19 (s, 2 H), 5.96 (s, 2 H), 6.30 (s, 1 H), 6.85 (s, 1 H), 7.00 (d, J = 11.4 Hz, 2 H).

13C NMR (75 MHz, CDCl3): δ = 22.7 (2 CH3), 43.6 (CH2), 48.5 (CH), 49.3 (CH2), 101.9 (CH2), 108.3 (CH), 112.8 (CH), 112.9 (C), 120.3 (CH), 127.6 (CH), 129.2 (C) 146.8 (C), 147.9 (C), 148.0 (C).

MS (ESI): m/z = 352, 354 ([M + H+] for 79Br and 81Br).

Anal. Calcd for C15H18BrN3O2: C, 51.15; H, 5.15; N, 11.93. Found: C, 51.35; H, 5.10; N, 11.81.


#

1-(2-Bromo-4,5-methylenedioxybenzyl)-2-(benzylaminomethyl)-1H-imidazole (4i)

Yield: 0.41 g (68%); yellowish sticky mass; Rf = 0.35 (PE–EtOAc, 3:7).

IR (neat): 3261, 2904, 2788, 1489, 1242, 1106, 1034, 925, 851, 751, 698, 493 cm–1.

1H NMR (300 MHz, CDCl3): δ = 3.81 (s, 2 H), 3.84 (s, 2 H), 5.17 (s, 2 H), 5.94 (s, 2 H), 6.26 (s, 1 H), 6.85 (s, 1 H), 7.02 (d, J = 5.1 Hz, 2 H), 7.27 (d, J = 5.7 Hz, 5 H).

13C NMR (75 MHz, CDCl3): δ = 45.3 (CH2), 49.4 (CH2), 53.4 (CH2), 101.9 (CH2), 108.2 (CH), 112.8 (CH), 112.9 (C), 120.5 (C), 127.0 (2 CH), 127.7 (CH), 128.1 (2 CH), 128.4 (2 CH), 129.2 (C), 139.7 (C), 146.5 (C), 148.0 (C).

MS (ESI): m/z = 400, 402 ([M + H+] for 79Br and 81Br), 422, 424 ([M + Na+] for 79Br and 81Br).

Anal. Calcd for C19H18BrN3O2: C, 57.01; H, 4.53; N, 10.50. Found: C, 57.21; H, 4.50; N, 10.40.


#

1-(2-Bromo-4,5-methylenedioxybenzyl)-2-(phenylaminomethyl)-1H-imidazole (4j)

Yield: 0.26 g (71%); white solid; mp 136–138 °C; Rf = 0.75 (PE–EtOAc, 3:7).

IR (KBr): 1605, 1504, 1473, 1414, 1321, 1234, 1107, 1031, 926, 850, 751, 697, 515 cm–1.

1H NMR (300 MHz, CDCl3): δ = 4.30 (s, 2 H), 5.13 (s, 2 H), 5.95 (s, 2 H), 6.20 (s, 1 H), 6.67 (d, J = 7.8 Hz, 2 H), 6.74 (t, J = 6.9 Hz, 1 H), 6.88 (s, 1 H), 7.05 (d, J = 8.7 Hz, 2 H), 7.18 (t, J = 7.5 Hz, 2 H).

13C NMR (75 MHz, CDCl3): δ = 41.1 (CH2), 49.5 (CH2), 101.9 (CH2), 108.0 (CH), 112.8 (CH), 112.9 (C), 113.1 (2 CH), 118.0 (CH), 120.8 (CH), 127.8 (CH), 128.4 (C), 129.1 (2 CH), 145.1 (C), 147.4 (C), 147.9 (C), 148.1 (C).

MS (ESI): m/z = 386, 388 ([M + H+] for 79Br and 81Br), 408, 410 ([M + Na+] for 79Br and 81Br).

Anal. Calcd for C18H16BrN3O2: C, 55.97; H, 4.18; N, 10.88. Found: C, 55.77; H, 4.13; N, 10.98.


#

1-(2-Bromo-4,5-methylenedioxybenzyl)-2-(4-methoxyphenylaminomethyl)-1H-imidazole (4k)

Yield: 0.27 g (75%); brownish sticky mass; Rf = 0.61 (PE–EtOAc, 3:7).

IR (neat): 2919, 2842, 1622, 1510, 1480, 1240, 1115, 1037, 930, 825, 754 cm–1.

1H NMR (600 MHz, CDCl3): δ = 3.74 (s, 3 H), 4.29 (s, 2 H), 5.15 (s, 2 H), 5.96 (s, 2 H), 6.19 (s, 1 H), 6.63 (d, J = 9.0 Hz, 2 H), 6.76 (d, J = 9.0 Hz, 2 H), 6.87 (s, 1 H), 7.05 (d, J = 9.0 Hz, 2 H).

13C NMR (150 MHz, CDCl3): δ = 42.1 (CH2), 49.6 (CH2), 55.7 (OCH3), 102.0 (CH2), 108.2 (CH), 112.8 (CH), 112.9 (C), 114.7 (4 CH), 120.7 (CH), 127.6 (CH), 128.4 (C) 141.6 (C), 145.5 (C), 148.0 (C), 148.2 (C), 152.6 (C).

MS (ESI): m/z = 416, 417 ([M + H+] for 79Br and 81Br), 438, 440 ([M + Na+] for 79Br and 81Br).

Anal. Calcd for C19H18BrN3O3: C, 54.82; H, 4.36; N, 10.09. Found: C, 54.72; H, 4.40; N, 10.19.


#

1-(2-Bromo-4,5-methylenedioxybenzyl)-2-(3,4-methylenedioxybenzylaminomethyl)-1H-imidazole (4l)

Yield: 0.28 g (73%); light brown solid; mp 138–140 °C; Rf = 0.30 (PE–EtOAc, 3:7).

IR (KBr): 3250, 2960, 2899, 1680, 1500, 1340, 920, 840 cm–1.

1H NMR (300 MHz, CDCl3): δ = 3.70 (s, 2 H), 3.80 (s, 2 H), 5.15 (s, 2 H), 5.92 (s, 2 H), 5.95 (s, 2 H), 6.24 (s, 1 H), 6.72–6.85 (m, 4 H), 7.01 (d like, 2 H).

13C NMR (75 MHz, CDCl3): δ = 45.0 (CH2), 49.4 (CH2), 53.2 (CH2), 100.8 (CH2), 101.9 (CH2), 107.9 (CH), 108.1 (CH), 108.6 (CH), 112.7 (CH), 112.8 (C), 120.5 (CH), 121.2 (CH), 127.7 (CH), 129.2 (C), 129.9 (C), 133.6 (C), 146.5 (C), 147.6 (C), 147.9 (C), 148.0 (C).

MS (ESI): m/z = 444, 446 ([M + H+] for 79Br and 81Br).

Anal. Calcd for C20H18BrN3O4: C, 54.07; H, 4.08; N, 9.46. Found: C, 54.29; H, 4.03; N, 9.56.


#

4,10-Dihydro-5H-imidazo[2,1-c][1,4]benzodiazepines 5a–l; General Procedure

To a stirred solution of 4al (0.92–1.63 mmol, 1 equiv) in anhyd toluene (15 mL) were added t-BuOK (1.84–3.26 mmol, 2 equiv), (±)-BINAP (10 mol%), and Pd2(dba)3 (10 mol%, Pd: 20 mol%). The reaction mixture was refluxed for 14–18 h under N2 atmosphere. After completion of the reaction (monitored by TLC, eluent: EtOAc), toluene was evaporated under vacuum, and the mixture was extracted with EtOAc (3 × 20 mL). The combined organic layers were washed with H2O (3 × 20 mL), followed by brine (30 mL), dried (Na2SO4), filtered, and the solvent was evaporated under vacuum. The crude mass was purified by column chromatography over neutral alumina to afford the desired compounds 5al.


#

4,10-Dihydro-5H-phenylimidazo[2,1-c][1,4]benzodiazepine (5a)

Yield: 0.21 g (73%); brownish sticky mass; Rf = 0.51 (PE–EtOAc, 3:7).

IR (neat): 1664, 1596, 1494, 1453, 1304, 1248, 1158, 1123, 1076, 748, 696 cm–1.

1H NMR (300 MHz, CDCl3): δ = 4.87 (s, 2 H), 4.95 (s, 2 H), 6.77 (d, J = 8.1 Hz, 2 H), 6.81–6.86 (m, 2 H), 6.95 (d, J = 0.9 Hz, 1 H), 7.16–7.22 (m, 2 H), 7.25–7.32 (m, 2 H), 7.35–7.42 (m, 2 H).

13C NMR (75 MHz, CDCl3): δ = 49.4 (CH2), 49.5 (CH2), 115.0 (2 CH), 119.5 (CH), 120.0 (CH), 127.0 (CH), 127.1 (CH), 129.0 (CH), 129.2 (2 CH), 129.5 (CH), 130.5 (CH), 135.1 (C), 144.2 (C), 147.1 (C), 147.8 (C).

MS (ESI): m/z = 262 [M + H]+.

Anal. Calcd for C17H15N3: C, 78.13; H, 5.79; N, 16.08. Found: C, 78.33; H, 5.75; N, 16.20.


#

4,10-Dihydro-5H-isopropylimidazo[2,1-c][1,4]benzodiazepine (5b)

Yield: 0.25 g (68%); brownish sticky mass; Rf = 0.32 (EtOAc).

IR (neat): 2969, 2928, 1675, 1598, 1491, 1456, 1375, 1315, 1275, 1170, 1122, 1051, 1010, 929, 742, 666 cm–1.

1H NMR (300 MHz, CDCl3): δ = 1.30 (d, J = 6.6 Hz, 6 H), 3.72–3.81 (m, 1 H), 4.33 (s, 2 H), 5.01 (s, 2 H), 6.84 (s, 1 H), 6.92 (s, 1 H), 7.00 (t, J = 6.6 Hz, 1 H), 7.22–7.36 (m, 3 H).

13C NMR (75 MHz, CDCl3): δ = 21.0 (2 CH3), 47.2 (CH2), 49.8 (CH2), 52.2 (CH), 119.0 (CH), 121.2 (CH), 122.7 (CH), 126.5 (CH), 128.5 (CH), 129.6 (CH), 131.6 (C), 144.6 (C), 151.4 (C).

MS (ESI): m/z = 228 [M + H]+.

Anal. Calcd for C14H17N3: C, 73.98; H, 7.54; N, 18.49. Found: C, 73.76; H, 7.50; N, 18.60.


#

4,10-Dihydro-5H-(3,4-methylenedioxybenzyl)imidazo[2,1-c][1,4]benzodiazepine (5c)

Yield: 0.23 g (65%); pale yellowish sticky mass; Rf = 0.35 (EtOAc).

IR (neat): 1654, 1601, 1494, 1445,1247, 1124, 1038, 930, 46 cm–1.

1H NMR (300 MHz, CDCl3): δ = 4.25 (s, 2 H), 4.26 (s, 2 H), 5.14 (s, 2 H), 5.93 (s, 2 H), 6.75 (d, J = 7.8 Hz, 1 H), 6.87 (d, J = 14.7 Hz, 4 H), 7.05 (t, J = 7.3 Hz, 1 H), 7.21 (s, 1 H), 7.27 (s, 1 H), 7.36 (t, J = 7.5 Hz, 1 H).

13C NMR (75 MHz, CDCl3): δ = 49.5 (CH2), 52.9 (CH2), 58.3 (CH2), 100.9 (CH2), 108.1 (CH), 108.6 (CH), 119.2 (CH), 120.0 (CH), 121.8 (CH), 123.3 (CH), 126.9 (CH), 128.4 (CH), 129.8 (CH), 131.5 (C), 131.8 (C), 143.8 (C), 146.9 (C), 147.9 (C), 150.8 (C).

MS (ESI): m/z = 320 [M + H]+, 342 [M + Na]+.

Anal. Calcd for C19H17N3O2: C, 71.46; H, 5.37; N, 13.16. Found: C, 71.66; H, 5.41; N, 13.04.


#

4,10-Dihydro-5H-8-methoxy-5-isopropylimidazo[2,1-c][1,4]benzodiazepine (5d)

Yield: 0.27 g (71%); yellowish sticky mass; Rf = 0.27 (EtOAc).

IR (neat): 2966, 1644, 1607, 1499, 1428, 1267, 1166, 1043, 923, 817, 750 cm–1.

1H NMR (300 MHz, CDCl3): δ = 1.26 (d, J = 6.3 Hz, 6 H), 3.63–3.67 (m, 1 H), 3.77 (s, 3 H), 4.28 (s, 2 H), 4.98 (s, 2 H), 6.79–6.82 (m, 2 H), 6.86 (dd, J = 3.0, 8.7 Hz, 1 H), 6.91 (s, 1 H), 7.20 (d, J = 8.7 Hz, 1 H).

13C NMR (75 MHz, CDCl3): δ = 21.2 (2 CH3), 48.5 (CH2), 49.2 (CH2), 52.1 (CH), 55.3 (OCH3), 113.9 (CH), 114.1 (CH), 119.1 (CH), 122.9 (CH), 126.7 (CH), 133.9 (C), 144.3 (C), 144.8 (C), 155.2 (C).

MS (ESI): m/z = 258 [M + H]+.

Anal. Calcd for C15H19N3O: C, 70.01; H, 7.44; N, 16.33. Found: C, 69.81; H, 7.40; N, 16.45.


#

4,10-Dihydro-5H-8-methoxy-5-phenylimidazo[2,1-c][1,4]benzodiazepine (5e)

Yield: 0.22 g (68%); dark yellow solid; mp 98–100 °C; Rf = 0.35 (PE–EtOAc, 3:7).

IR (KBr): 1588, 1496, 1429, 1365, 1304, 1273, 1237, 1211, 1153, 1081, 1036, 882, 841, 748, 695, 566 cm–1.

1H NMR (300 MHz, CDCl3): δ = 3.84 (s, 3 H), 4.77 (s, 2 H), 4.93 (s, 2 H), 6.72 (d, J = 8.1 Hz, 2 H), 6.79 (d, J = 9.6 Hz, 2 H), 6.94 (d, J = 8.4 Hz, 3 H), 7.17 (t, J = 7.6 Hz, 2 H), 7.28 (t like, J = 7.3 Hz, 1 H).

13C NMR (75 MHz, CDCl3): δ = 49.3 (CH2), 49.6 (CH2), 55.5 (OCH3), 114.0 (2 CH), 114.9 (CH), 115.3 (CH), 118.8 (CH), 120.1 (CH), 127.1 (CH), 129.2 (CH), 130.4 (CH), 136.4 (C), 139.3 (C), 144.4 (C), 147.9 (C), 158.3 (C).

MS (EI): m/z = 291.

Anal. Calcd for C18H17N3O: C, 74.20; H, 5.88; N, 14.42. Found: C, 74.40; H, 5.92; N, 14.32.


#

4,10-Dihydro-5H-8-methoxy-5-benzylimidazo[2,1-c][1,4]benzodiazepine (5f)

Yield: 0.31 g (76%); pale brown solid; mp 88–90 °C; Rf = 0.26 (EtOAc).

IR (KBr): 2922, 2808, 1501, 1450, 1375, 1255, 1206, 1149, 1046, 821, 700 cm–1.

1H NMR (300 MHz, CDCl3): δ = 3.77 (s, 3 H), 4.19 (s, 2 H), 4.31 (s, 2 H), 5.12 (s, 2 H), 6.86 (d like, 4 H), 7.17 (d, J = 8.7 Hz, 1 H), 7.23–7.33 (m, 3 H), 7.40 (d, J = 6.9 Hz, 2 H).

13C NMR (75 MHz, CDCl3): δ = 49.4 (CH2), 53.7 (CH2), 55.4 (OCH3), 58.6 (CH2), 114.1 (CH), 114.2 (CH), 119.2 (CH), 120.9 (CH), 126.8 (CH), 127.3 (CH), 128.3 (2 CH), 128.4 (2 CH), 133.3 (C), 138.0 (C), 143.8 (C), 143.9 (C), 155.5 (C).

MS (ESI): m/z = 306 [M + H]+, 328 [M + Na]+.

Anal. Calcd for C19H19N3O: C, 74.73; H, 6.27; N, 13.76. Found: C, 74.53; H, 6.23; N, 13.86.


#

4,10-Dihydro-5H-8-methoxy-5-(3,4-methylenedioxybenzyl)imidazo[2,1-c][1,4]benzodiazepine (5g)

Yield: 0.26 g (72%); pale yellow solid; mp 146–148 °C; Rf = 0.36 (EtOAc).

IR (KBr): 1496, 1439, 1375, 1245, 1201, 1125, 1033, 925, 866, 813, 732, 640, 540 cm–1.

1H NMR (300 MHz, CDCl3): δ = 3.78 (s, 3 H), 4.16 (s, 2 H), 4.20 (s, 2 H), 5.10 (s, 2 H), 5.93 (s, 2 H), 6.74 (d, J = 7.8 Hz, 1 H), 6.84–6.90 (m, 6 H), 7.15 (d, J = 8.4 Hz, 1 H).

13C NMR (75 MHz, CDCl3): δ = 49.4 (CH2), 53.5 (CH2), 55.4 (OCH3), 58.3 (CH2), 100.8 (CH2), 107.9 (CH), 108.5 (CH), 114.1 (CH), 114.2 (CH), 119.2 (CH), 120.9 (CH), 121.7 (CH), 126.8 (CH), 131.9 (C), 133.3 (C), 143.7 (C), 143.8 (C), 146.8 (C), 147.8 (C), 155.5 (C).

MS (ESI): m/z = 350 [M + H]+, 372 [M + Na]+.

Anal. Calcd for C20H19N3O3: C, 68.75; H, 5.48; N, 12.03. Found: C, 68.97; H, 5.52; N, 11.91.


#

4,10-Dihydro-5H-7,8-methylenedioxy-5-isopropylimidazo[2,1-c][1,4]benzodiazepine (5h)

Yield: 0.31 g (70%); yellowish sticky mass; Rf = 0.30 (EtOAc).

IR (neat): 2970, 2830, 1505, 1440, 1380, 1240, 1150, 1030, 940, 730 cm–1.

1H NMR (300 MHz, CDCl3): δ = 1.26 (d, J = 6.6 Hz, 6 H), 3.56–3.64 (m, 1 H), 4.27 (s, 2 H), 4.91 (s, 2 H), 5.93 (s, 2 H), 6.72 (s, 1 H), 6.82 (d, J = 9.0 Hz, 2 H), 6.91 (s, 1 H).

13C NMR (75 MHz, CDCl3): δ = 21.5 (2 CH3), 48.6 (CH2), 49.6 (CH2), 52.3 (CH), 101.3 (CH2), 103.7 (CH), 108.3 (CH), 119.1 (CH), 126.2 (C), 126.7 (CH), 143.2 (C), 144.6 (C), 145.8 (C), 148.3 (C).

MS (ESI): m/z = 272 [M + H]+.

Anal. Calcd for C15H17N3O2: C, 66.40; H, 6.32; N, 15.49. Found: C, 66.18; H, 6.35; N, 15.60.


#

4,10-Dihydro-5H-7,8-methylenedioxy-5-benzylimidazo[2,1-c][1,4]benzodiazepine (5i)

Yield: 0.34 g (75%); yellowish sticky mass; Rf = 0.45 (EtOAc).

IR (neat): 1491, 1443, 1390, 1238, 1175, 1125, 1037, 932, 856, 750 cm–1.

1H NMR (300 MHz, CDCl3): δ = 4.19 (s, 2 H), 4.28 (s, 2 H), 5.05 (s, 2 H), 5.93 (s, 2 H), 6.75–6.88 (m, 4 H), 7.26–7.38 (m, 5 H).

13C NMR (75 MHz, CDCl3): δ = 49.2 (CH2), 53.7 (CH2), 58.7 (CH2), 101.4 (CH2), 102.0 (CH), 108.3 (CH), 119.1 (CH), 125.5 (C), 126.6 (CH), 127.5 (CH), 128.4 (2 CH), 128.6 (2 CH), 137.8 (C), 143.3 (C), 143.7 (C), 145.2 (C), 148.4 (C).

MS (ESI): m/z = 320 [M + H]+, 342 [M + Na]+.

Anal. Calcd for C19H17N3O2: C, 71.46; H, 5.37; N, 13.16. Found: C, 71.66; H, 5.42; N, 13.06.


#

4,10-Dihydro-5H-7,8-methylenedioxy-5-phenylimidazo[2,1-c][1,4]benzodiazepine (5j)

Yield: 0.28 g (74%); pale yellow solid; mp 140–142 °C; Rf = 0.42 (PE–EtOAc, 3:7).

IR (KBr): 1597, 1492, 1382, 1299, 1227, 1192, 1120, 1038, 929, 864, 757, 691 cm–1.

1H NMR (300 MHz, CDCl3): δ = 4.72 (s, 2 H), 4.91 (s, 2 H), 6.02 (s, 2H), 6.74–6.84 (m, 5 H), 6.95 (s, 2 H), 7.19 (t, J = 7.3 Hz, 2 H).

13C NMR (75 MHz, CDCl3): δ = 49.1 (2 CH2), 101.8 (CH2), 109.1 (CH), 109.9 (CH), 114.2 (CH), 119.1 (CH), 119.9 (CH), 127.0 (CH), 128.7 (C), 129.2 (CH), 140.7 (C), 144.1 (C), 146.2 (C), 147.6 (C), 148.7 (C).

MS (ESI): m/z = 306 [M + H]+.

Anal. Calcd for C18H15N3O2: C, 70.81; H, 4.95; N, 13.76. Found: C, 70.61; H, 4.90; N, 13.88.


#

4,10-Dihydro-5H-7,8-methylenedioxy-5-(4-methoxyphenyl)imidazo[2,1-c][1,4]benzodiazepine (5k)

Yield: 0.27 g (67%); yellowish sticky mass; Rf = 0.48 (EtOAc).

IR (neat): 1729, 1619, 1506, 1384, 1241, 1123, 1036, 931, 825, 755, 666 cm–1.

1H NMR (300 MHz, CDCl3): δ = 3.75 (s, 3 H), 4.80 (s, 2 H), 4.90 (s, 2 H), 5.98 (s, 2 H), 6.70–6.80 (m, 7 H), 6.97 (s, 1 H).

13C NMR (75 MHz, CDCl3): δ = 49.3 (CH2), 50.0 (CH2), 55.6 (OCH3), 101.7 (CH2), 108.8 (CH), 109.2 (CH), 114.6 (2 CH), 117.2 (2 CH), 119.8 (CH), 126.5 (CH), 128.0 (C), 142.1 (C), 142.2 (C), 144.0 (C), 145.6 (C), 148.7 (C), 153.6 (C).

MS (ESI): m/z = 336 [M + H]+.

Anal. Calcd for C19H17N3O3: C, 68.05; H, 5.11; N, 12.53. Found: C, 68.27; H, 5.08; N, 12.43.


#

4,10-Dihydro-5H-7,8-methylenedioxy-5-(3,4-methylenedioxybenzyl)imidazo[2,1-c][1,4]benzodiazepine (5l)

Yield: 0.21 g (63%); yellow solid; mp 182–184 °C; Rf = 0.31 (EtOAc­).

IR (KBr): 2895, 2834, 1615, 1490, 1442, 1384, 1246, 1165, 1116, 1036, 930, 861, 729, 675 cm–1.

1H NMR (300 MHz, CDCl3): δ = 4.16 (s, 4 H), 5.03 (s, 2 H), 5.93 (s, 4 H), 6.75–6.88 (m, 7 H).

13C NMR (75 MHz, CDCl3): δ = 49.1 (CH2), 53.5 (CH2), 58.4 (CH2), 100.9 (CH2), 101.3 (CH2), 101.9 (CH), 108.0 (CH), 108.3 (CH), 108.6 (CH), 119.1 (CH), 121.8 (CH), 125.5 (C), 126.8 (CH), 131.6 (C), 143.3 (C), 143.6 (C), 145.2 (C), 146.9 (C), 147.9 (C), 148.3 (C).

MS (ESI): m/z = 364 [M + H]+.

Anal. Calcd for C19H15N3O4: C, 65.32; H, 4.33; N, 12.03. Found: C, 65.52; H, 4.30; N, 12.15.


#
#

Acknowledgment

S.M. thanks Council of Scientific and Industrial Research (CSIR) for providing a senior research fellowship (SRF). Thanks are also due to Dr. B. Achari, Former Emeritus Scientist, IICB, for valuable suggestions.

Supporting Information

  • References

    • 1a Stefancich G, Artico M, Massa S, Corelli F. Synthesis 1981; 321
    • 1b Gall M, Kamdar BV. J. Org. Chem. 1981; 46: 1575
    • 1c Watjen F, Baker R, Engelstoff M, Herbert R, MacLeod A, Knight A, Merchant K, Moseley J, Saunders J, Swain CJ, Wong E, Springer JP. J. Med. Chem. 1989; 32: 2282
    • 1d Kukla MJ, Breslin HJ, Diamond CJ, Grous PP, Ho CY, Miranda M, Rodgers JD, Sherrill RG, De Clercq E, Pauwels R, Andries K, Moens L, Janssen MA, Janssen PA. J. Med. Chem. 1991; 34: 3187
    • 1e Breslin HJ, Kukla MJ, Ludovici DW, Mohrbacher R, Ho W, Miranda M, Rodgers JD, Hitchens TK, Leo G, Gauthier DA, Ho CY, Scott MK, De Clercq E, Auwels R, Andries K, Janssen MA, Janssen PA. J. Med. Chem. 1995; 38: 771
    • 1f Liu R, Hu RJ, Zhang P, Skolnick P, Cook JM. J. Med. Chem. 1996; 39: 1928
    • 1g Anzini M, Braile C, Valenti S, Cappelli A, Vomero S, Marinelli L, Limongelli V, Novellino E, Betti L, Giannaccini G, Lucacchini A, Ghelardini C, Norcini M, Makovec F, Giorgi G, Fryer RI. J. Med. Chem. 2008; 51: 4730
    • 1h Anzini M, Valenti S, Braile C, Cappelli A, Vomero S, Alcaro S, Ortuso F, Marinelli L, Limongelli V, Novellino E, Betti L, Giannaccini G, Lucacchini A, Daniele S, Martini C, Ghelardini C, Di Cesare MannelliL, Giorgi G, Mascia MP, Biggio G. J. Med. Chem. 2011; 54: 5694
  • 2 Wright WB, Brabander HJ, Greenblatt EN, Day IP, Hardy RA. J. Med. Chem. 1978; 21: 1087
  • 3 Selnick HG, Liverton NJ, Baldwin JJ, Butcher JW, Claremon DA, Elliotte JM, Freidinger RM, King SA, Libby BE, Mcintyre CJ, Pribush DA, Remy DC, Smith GR, Tebben AJ, Jurkiewicz NK, Lynch JJ, Salata JJ, Sanguinetti MC, Siegal PK. S, Slaughter DE, Vyas K. J. Med. Chem. 1997; 40: 3865
  • 4 Albright JD, Feich MF, Santos EG. D, Dusza JP, Sum FW, Venkatesan AM, Coupet J, Chan PS, Ru X, Mazandarani H, Bailey T. J. Med. Chem. 1998; 41: 2442
  • 5 Castro JL, Broughton HB, Russell MG. N, Rathbone D, Watt AP, Ball RG, Chapman KL, Patel S, Smith AJ, Marshall GR, Matassa VG. J. Med. Chem. 1987; 40: 2491
  • 6 Müller WE, Groh B, Bub O. Pharmacopsychiatry 1986; 10: 314
  • 7 Nicholson AN, Stone BM, Clarke CH. Br. J. Clin. Pharmacol. 1977; 4: 567
  • 8 Eltze M, Gönne S, Riedel R, Schlotke B, Schudt C, Simon WA. Eur. J. Pharmacol. 1985; 112: 211
    • 9a De Clercq E. Farmaco 2001; 56: 3
    • 9b De Clercq E. Farmaco 1999; 54: 26
  • 10 Neogi A, Majhi TP, Mukhopadhyay R, Chattopadhyay P. J. Org. Chem. 2006; 71: 3291; and the references cited therein
  • 11 Mitra S, Banerjee TS, Hota SK, Bhattacharya D, Das S, Chattopadhyay P. Eur. J. Med. Chem. 2011; 46: 1713; and the references cited therein
  • 12 Adhikary ND, Chattopadhyay P. Eur. J. Org. Chem. 2011; 7346
    • 13a Wolfe JP, Rennels RA, Buchwald SL. Tetrahedron 1996; 52: 7525
    • 13b Wolfe JP, Wagaw S, Buchwald SL. Acc. Chem. Res. 1998; 31: 805
    • 13c Yang BH, Buchwald SL. Org. Lett. 1999; 1: 35
    • 13d Singh KU, Strieter RE, Blackmond GD, Buchwald SL. J. Am. Chem. Soc. 2002; 124: 14104
    • 13e Kalinski C, Umkehrer M, Ross G, Kolb J, Burdack C, Hiller W. Tetrahedron Lett. 2006; 47: 3423
    • 13f Leng DH, Wang DX, Pan J, Huang ZT, Wang MX. J. Org. Chem. 2009; 74: 6077
    • 13g Kshirsagar UA, Argade NP. Org. Lett. 2010; 12: 3716
    • 13h Wang HJ, Wang Y, Camara F, Paquette WD, Csakai AJ, Mangette JE. Tetrahedron Lett. 2011; 52: 541
    • 13i Kenwright JL, Galloway WR. J. D, Blackwell DT, Liobet AI, Hodgkinson J, Wortmann L, Bowden SD, Welch M, Spring DR. Chem. Eur. J. 2011; 17: 2981
    • 13j Chen P, Gao M, Wang DX, Zhao L, Wang MX. J. Org. Chem. 2012; 77: 4063
  • 14 Zalesskiy SS, Ananikov VP. Organometallics 2012; 31: 2302

  • References

    • 1a Stefancich G, Artico M, Massa S, Corelli F. Synthesis 1981; 321
    • 1b Gall M, Kamdar BV. J. Org. Chem. 1981; 46: 1575
    • 1c Watjen F, Baker R, Engelstoff M, Herbert R, MacLeod A, Knight A, Merchant K, Moseley J, Saunders J, Swain CJ, Wong E, Springer JP. J. Med. Chem. 1989; 32: 2282
    • 1d Kukla MJ, Breslin HJ, Diamond CJ, Grous PP, Ho CY, Miranda M, Rodgers JD, Sherrill RG, De Clercq E, Pauwels R, Andries K, Moens L, Janssen MA, Janssen PA. J. Med. Chem. 1991; 34: 3187
    • 1e Breslin HJ, Kukla MJ, Ludovici DW, Mohrbacher R, Ho W, Miranda M, Rodgers JD, Hitchens TK, Leo G, Gauthier DA, Ho CY, Scott MK, De Clercq E, Auwels R, Andries K, Janssen MA, Janssen PA. J. Med. Chem. 1995; 38: 771
    • 1f Liu R, Hu RJ, Zhang P, Skolnick P, Cook JM. J. Med. Chem. 1996; 39: 1928
    • 1g Anzini M, Braile C, Valenti S, Cappelli A, Vomero S, Marinelli L, Limongelli V, Novellino E, Betti L, Giannaccini G, Lucacchini A, Ghelardini C, Norcini M, Makovec F, Giorgi G, Fryer RI. J. Med. Chem. 2008; 51: 4730
    • 1h Anzini M, Valenti S, Braile C, Cappelli A, Vomero S, Alcaro S, Ortuso F, Marinelli L, Limongelli V, Novellino E, Betti L, Giannaccini G, Lucacchini A, Daniele S, Martini C, Ghelardini C, Di Cesare MannelliL, Giorgi G, Mascia MP, Biggio G. J. Med. Chem. 2011; 54: 5694
  • 2 Wright WB, Brabander HJ, Greenblatt EN, Day IP, Hardy RA. J. Med. Chem. 1978; 21: 1087
  • 3 Selnick HG, Liverton NJ, Baldwin JJ, Butcher JW, Claremon DA, Elliotte JM, Freidinger RM, King SA, Libby BE, Mcintyre CJ, Pribush DA, Remy DC, Smith GR, Tebben AJ, Jurkiewicz NK, Lynch JJ, Salata JJ, Sanguinetti MC, Siegal PK. S, Slaughter DE, Vyas K. J. Med. Chem. 1997; 40: 3865
  • 4 Albright JD, Feich MF, Santos EG. D, Dusza JP, Sum FW, Venkatesan AM, Coupet J, Chan PS, Ru X, Mazandarani H, Bailey T. J. Med. Chem. 1998; 41: 2442
  • 5 Castro JL, Broughton HB, Russell MG. N, Rathbone D, Watt AP, Ball RG, Chapman KL, Patel S, Smith AJ, Marshall GR, Matassa VG. J. Med. Chem. 1987; 40: 2491
  • 6 Müller WE, Groh B, Bub O. Pharmacopsychiatry 1986; 10: 314
  • 7 Nicholson AN, Stone BM, Clarke CH. Br. J. Clin. Pharmacol. 1977; 4: 567
  • 8 Eltze M, Gönne S, Riedel R, Schlotke B, Schudt C, Simon WA. Eur. J. Pharmacol. 1985; 112: 211
    • 9a De Clercq E. Farmaco 2001; 56: 3
    • 9b De Clercq E. Farmaco 1999; 54: 26
  • 10 Neogi A, Majhi TP, Mukhopadhyay R, Chattopadhyay P. J. Org. Chem. 2006; 71: 3291; and the references cited therein
  • 11 Mitra S, Banerjee TS, Hota SK, Bhattacharya D, Das S, Chattopadhyay P. Eur. J. Med. Chem. 2011; 46: 1713; and the references cited therein
  • 12 Adhikary ND, Chattopadhyay P. Eur. J. Org. Chem. 2011; 7346
    • 13a Wolfe JP, Rennels RA, Buchwald SL. Tetrahedron 1996; 52: 7525
    • 13b Wolfe JP, Wagaw S, Buchwald SL. Acc. Chem. Res. 1998; 31: 805
    • 13c Yang BH, Buchwald SL. Org. Lett. 1999; 1: 35
    • 13d Singh KU, Strieter RE, Blackmond GD, Buchwald SL. J. Am. Chem. Soc. 2002; 124: 14104
    • 13e Kalinski C, Umkehrer M, Ross G, Kolb J, Burdack C, Hiller W. Tetrahedron Lett. 2006; 47: 3423
    • 13f Leng DH, Wang DX, Pan J, Huang ZT, Wang MX. J. Org. Chem. 2009; 74: 6077
    • 13g Kshirsagar UA, Argade NP. Org. Lett. 2010; 12: 3716
    • 13h Wang HJ, Wang Y, Camara F, Paquette WD, Csakai AJ, Mangette JE. Tetrahedron Lett. 2011; 52: 541
    • 13i Kenwright JL, Galloway WR. J. D, Blackwell DT, Liobet AI, Hodgkinson J, Wortmann L, Bowden SD, Welch M, Spring DR. Chem. Eur. J. 2011; 17: 2981
    • 13j Chen P, Gao M, Wang DX, Zhao L, Wang MX. J. Org. Chem. 2012; 77: 4063
  • 14 Zalesskiy SS, Ananikov VP. Organometallics 2012; 31: 2302

Zoom Image
Scheme 1 Proposed mechanism for the synthesis of imidazobenzodiazepine