Synlett 2012; 23(19): 2850-2852
DOI: 10.1055/s-0032-1317474
letter
© Georg Thieme Verlag Stuttgart · New York

Efficient One-pot Synthesis of 1H-Pyrazolo[1,5-b]indazoles by a Domino Staudinger–Aza-Wittig Cyclization

Fen-Fen Zhao
a   Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Central China Normal University, Wuhan 430079, P. R. of China
,
Yan-Mei Yan
a   Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Central China Normal University, Wuhan 430079, P. R. of China
,
Rui Zhang
b   College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. of China   Fax: +86(27)67862041   Email: mwding@mail.ccnu.edu.cn
,
Ming-Wu Ding*
a   Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Central China Normal University, Wuhan 430079, P. R. of China
› Author Affiliations
Further Information

Publication History

Received: 25 August 2012

Accepted after revision: 20 September 2012

Publication Date:
18 October 2012 (online)


Abstract

1H-Pyrazolo[1,5-b]indazoles were prepared via a domino Staudinger–aza-Wittig cyclization in one-pot fashion, starting from easily accessible azides and triphenylphosphine.

Supporting Information

 
  • References and Notes

  • 2 Rodgers JD, Johnson BL, Wang H, Greenberg RA, Erickson Viitanen S, Klabe RM, Cordova BC, Rayner MM, Lam GN, Chang C.-H. Bioorg. Med. Chem. Lett. 1996; 6: 2919
  • 3 Lee F.-Y, Lien J.-C, Huang L.-J, Huang T.-M, Tsai S.-C, Teng C.-M, Wu C.-C, Cheng FC, Kuo S.-C. J. Med. Chem. 2001; 44: 3746
  • 4 Yakaiah T, Lingaiah BP. V, Narsaiah B, Shireesha B, Kumar BA, Gururaj S, Parthasarathy T, Sridhar B. Bioorg. Med. Chem. Lett. 2007; 17: 3445
  • 5 Yakaiah T, Lingaiah BP. V, Narsaiah B, Kumar KP, Murthy US. N. Eur. J. Med. Chem. 2008; 341
  • 6 Minu M, Thangadurai A, Wakode SR, Agrawal SS, Narasimhan B. Bioorg. Med. Chem. Lett. 2009; 19: 2960
  • 7 Park JS, Yu KA, Yoon YS, Han MR, Kang TH, Kim S, Kim NJ, Yun H, Suh YG. Drugs Future 2007; 32: 121
  • 8 Park JS, Yu KA, Kang TH, Kim S, Suh YG. Bioorg. Med. Chem. Lett. 2007; 17: 3486
  • 10 Molina P, Conesa C, Alías A, Arques A, Velasco MD. Tetrahedron 1993; 49: 7599
  • 12 General Procedure for the Preparation of Azides 5 To a mixture of piperidine (0.85 g, 10 mmol) and AcOH (0.6 g, 10 mmol) in EtOH (10 mL) at 0 °C was added 2-azidobenzaldehyde (1.32 g, 10 mmol) and ketone (10 mmol). After stirring for 1–2 h, the solvent was evaporated under vacuum, and the residue was recrystallized to give the azide 5. Compound 5a: light yellow solid (yield 89%), mp 75–76 °C. 1H NMR (600 MHz, CDCl3): δ = 7.80 (s, 1 H, =CH), 7.46–7.11 (m, 4 H, ArH), 4.30–4.25 (m, 2 H, OCH2), 2.45 (s, 3 H, CH3), 1.24–1.20 (m, 3 H, CH3) ppm. 13C NMR (150 MHz, CDCl3): d = 194.7, 167.1, 139.3, 136.2, 135.5, 131.6, 128.9, 124.6, 118.3, 61.5, 26.4, 13.7 ppm. MS (EI, 70 eV): m/z (%) = 259 (4) [M+], 231 (12), 217 (19), 203 (27), 143 (100), 115 (58). Anal. Calcd for C13H13N3O3: C, 60.22; H, 5.05; N, 16.21. Found: C, 60.01; H, 4.92; N, 16.02.
  • 13 General Procedure for the Preparation of 9 To a solution of azide 5 (2 mmol) in dry toluene (10 mL) was added dropwise a solution of Ph3P (0.52 g, 2 mmol) in toluene (10 mL) at 0 °C. The reaction mixture was stirred for 2 h and then was refluxed for 2–8 h. The mixture was condensed, and the precipitate was collected or the residue was chromatographed (PE–Et2O, 4:1) on a silica gel column to give 1H-pyrazolo[1,5-b]indazole derivatives 9. Compound 9a: white solid (yield 90%); mp 193–194 °C. 1H NMR (600 MHz, CDCl3): δ = 12.0 (s, 1 H, NH), 8.27 (d, J = 7.8 Hz, 2 H, ArH), 7.54–7.32 (m, 4 H, ArH), 4.45 (q, J = 7.2 Hz, 2 H, OCH2), 2.67 (s, 3 H, CH3), 1.50 (t, J = 7.2 Hz, 3 H, CH3) ppm. 13C NMR (150 MHz, CDCl3): δ = 164.0, 152.7, 143.4, 135.5, 128.4, 123.0, 122.4, 116.2, 110.8, 100.2, 59.9, 14.8, 14.3 ppm. MS (EI, 70 eV): m/z (%) = 243 (39) [M+], 198 (10), 144 (100). Anal. Calcd for C13H13N3O2: C, 64.19; H, 5.39; N, 17.27. Found: C, 63.89; H, 5.22; N, 17.32.
  • 14 Luheshi AB. N, Salem SM, Smalley RK. Tetrahedron Lett. 1990; 31: 6561