Synthesis 2013; 45(1): 111-117
DOI: 10.1055/s-0032-1317781
paper
© Georg Thieme Verlag Stuttgart · New York

A One-Pot Transition-Metal-Free Tandem Process to 1,4-Benzodiazepine Scaffolds

Yanqiu Li
,
Chunjing Zhan
,
Bingchuan Yang
a   School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. of China
,
Xiaoqun Cao*
b   Department of Chemical Engineering, Taishan Medical University, Taian, P. R. of China
,
Chen Ma*
a   School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. of China
c   State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, P. R. of China   Fax: +86(531)88564464   Email: chenma@sdu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 31 August 2012

Accepted after revision: 16 November 2012

Publication Date:
30 November 2012 (online)

 


Abstract

An efficient and practical method for the synthesis of 1,4-benzodiazepines is reported. This methodology offers a transition-metal-free tandem process in one pot. This process is applicable to the construction of a wide variety of 1,4-benzodiazepines and other tricyclic systems with high potential biological and pharmacological activities.


#

The synthesis of heterocycles[ 2 ] is currently regarded as one of the primary challenges in medicinal chemistry. 1,4-Benzodiazepines have received considerable attention because of their biological activities such as antidepressant,[ 3 ] anti-inflammatory,[ 4 ] antagonist,[ 5 ] antimicrobial,[ 6 ] anti-HIV agents,[ 7 ] and antihypertensive[ 8 ] activities. The 1,4-benzodiazepine moiety is also a pivotal intermediate for the production of the medicines, which are currently marketed including olanzapine, clozapine, and viramune (Figure [1]).[ 9 ] Pyridazinone derivatives still play an important role in medicinal chemistry owing to their biological activities,[ 10 ] including antimicrobial,[ 11 ] pesticide,[ 12 ] analgesic,[ 13 ] herbicidal,[ 14 ] and anticancer[ 15 ] activities.

Zoom Image
Figure 1 Structures of olanzapine, clozapine and viramune

To date, several methods have been reported for the synthesis of these 1,4-benzodiazepine scaffolds.[ 16 ] Wang et al. described the synthesis of these tricyclic compounds in chlorobenzene using ortho-substituted benzoic acids and benzene-1,2-diamine in the presence of copper.[ 17 ] Joshua and co-workers reported the synthesis of a tricyclic lactam by coupling 2,5-dibromonitrobenzene with anthranilic acid via multiple steps.[ 18 ] Diao and Ma developed a new copper-catalyzed strategy to construct these compounds from ortho-substituted aryl bromides and primary amines.[ 19 ] However, these procedures suffer from some disadvantages such as complex manipulation[ 20 ] and the use of transition metal catalyst.[ 21 ] Additionally, to the best of our knowledge, fused pyridazinobenzodiazepines have not been reported. We believe these to be valuable intermediates in medicinal chemistry.

Herein, we report an effective metal-free process for the synthesis of 1,4-benzodiazepines and fused pyridazinobenzodiazepines. Substituted benzenes 2 and N-substituted 2-aminobenzamides 1 were used as substrates in the presence of cesium carbonate (Scheme [1]). 2-Aminobenz­amide (1a) and 4,5-dichloro-2-(tetrahydro-2H-pyran-2-yl)pyridazin-3(2H)-one (4) as substrates, sodium hydride as the base, and DMF as the solvent were used to synthesize the fused pyridazinobenzodiazepine 5 (Scheme [2]).

Zoom Image
Scheme 1 One-pot synthesis of 1,4-benzodiazepines
Zoom Image
Scheme 2 One-pot synthesis of a pyridazinobenzodiazepine

Initially, the 2-aminobenzamide (1a) and 2,3-difluorobenzonitrile (2e) were chosen as models to determine the optimized conditions. As shown in Table 1, the reaction temperature, base, and solvent were investigated. The preliminary study was conducted using K2CO3 as the base and DMF as the solvent at room temperature for 48 hours, but the desired product 3d was not obtained. Increasing the temperature to 150 °C led to the desired product in 30% yield (Table 1, entry 2). Next, the reaction was carried out using various bases, and Cs2CO3 provided the highest yields (Table 1, entries 1–4). When strong base such as NaH or t-BuOK was used in the reaction, no desired 3d was obtained (Table 1, entries 1, 4, 7, and 8). Finally, the solvents DMF and DMSO were investigated using Cs2CO3 as the base (Table 1, entries 3 and 6). To our delight, the desired product 3d was obtained in 54% yield when DMF was used.

Table 1 Reaction Conditions and Yields for the Synthesis of 3d

Entry

Base

Solvent

Temp (°C)

Time (h)

Yield (%)

1

NaH

DMF

150

8

0

2

K2CO3

DMF

150

12

30

3

Cs2CO3

DMF

150

8

54

4

t-BuOK

DMF

150

12

0

5

K2CO3

DMSO

150

12

28

6

Cs2CO3

DMSO

150

6

52

7

t-BuOK

DMSO

150

12

0

8

NaH

DMSO

150

8

0

The optimized conditions (Table 1, entry 3) were applied to a variety of compounds 2, and the results are summarized in Table 2. As observed in Table 2, the reaction proceeded well with substituted benzenes and N-substituted 2-aminobenzamides to give a range of 1,4-benzodiazepines.[ 22 ] When 1 was reacted with benzenes containing electron-withdrawing groups (halogen, nitro, cyano, and trifluoromethyl), the corresponding products 3 were generated in moderate to good yields (Table 2, entries 1–6, 8, and 11). Moreover, the reaction was also applied to 2-fluoro­-1-methyl-3-nitrobenzene (2g) bearing an electron-donating group, affording the desired product 3f in 67% yield (Table 2, entry 7). Further, 2-amino-N-methylbenz­amide (1b) possessing an electron-donating group was reacted with 2e under the same conditions to afford the corresponding product 3i in excellent yield (Table 2, entry 11).

Table 2 Synthesis of 1,4-Benzodiazepines 3 a

Entry

1

R1

2

Time (h)

Product 3

Yield (%)b

1

1a

H

2a

7

3a

68

2

1a

H

2b

7

3b

56

3

1a

H

2c

7.5

3c

51

4

1a

H

2d

5.5

3c

60

5

1a

H

2e

6.5

3d

54

6

1a

H

2f

6

3e

47

7

1a

H

2g

5.5

3f

67

8

1a

H

2h

6

3g

60

9

1a

H

2i

6

3h

trace

10

1a

H

2j

6.5

3h

trace

11

1b

Me

2e

5

3i

90

a Reaction conditions: 1 (1 mmol), 2 (1.2 mmol), Cs2CO3 (3 mmol), DMF (10 mL), 150 °C, 5–7.5 h.

b Isolated yield.

As shown in Table 2, the reactant with nitro group (Table 2, entries 9 and 10) could afford 3h,[21] [22a] but their yields were much lower than the substrates having a strong electron­-donating group. The tricyclic product 3h was obtained only in trace amounts and was confirmed by HRMS analysis. Conversely, the mono-substituted product 8 was mainly obtained (Scheme [3]).

Zoom Image
Scheme 3 Reaction of 1a with 2i and 2j

After the synthesis of 1,4-benzodiazepines 3, this methodology was explored for the preparation of fused pyridazinobenzodiazepines­ 5. Thus, 4,5-dichloro-2-(tetra­hydro-2H-pyran-2-yl)pyridazin-3(2H)-one (4) could be employed to construct 2-(tetrahydro-2H- pyran-2-yl)-5,11-dihydro-1H-benzo[e]pyridazino[4,5-b][1,4]diazepine-1,10(2H)-dione (5) in the presence of cesium carbonate in DMF at 120 °C in 54% yield. By comparison of various reaction conditions, we found that NaH in DMF at 80 °C was the most efficient system, giving the tricyclic product 5 in 84% yield (Scheme [2]).

Based on the experimental results, a proposed reaction mechanism of the one-pot formation of 3i is outlined in Scheme [4]. The reaction of 1b with 2e yielded compound 6 by nucleophilic aromatic substitution. The next step was the formation of intermediate 7. Finally, intermediate 7 underwent an intramolecular nucleophilic displacement of halogen anion by a nitrogen anion to yield compound 3i. To support this mechanism, the structure of 3i was unambiguously proved by single crystal X-ray analysis (Figure [2]).

Zoom Image
Scheme 4 A proposed reaction mechanism
Zoom Image
Figure 2 Single crystal X-ray structure of 3i

In summary, we have developed a simple and efficient approach for the synthesis of 1,4-benzodiazepines in moderate to good yields. The prominent features of this methodology are mild and metal catalyst-free reaction conditions. On the basis of the related work, a facile method was discovered for assembling 2-(tetrahydro-2H-pyran-2-yl)-5,11-dihydro-1H-benzo[e]pyridazino[4,5-b][1,4]diazepine-1,10(2H)-dione in high yield. Importantly, this method has high potential uses in the synthesis of biologically relevant compounds. Further investigation for broadening the application of this methodology is currently underway in our laboratory.

2-Amino-N-methylbenzamide (1b)[ 23 ] and 4,5-dichloro-2-(tetrahydro-2H-pyran-2-yl)pyridazin-3(2H)-one (4)[ 24 ] were prepared according to literature procedures. All other commercial reagents were used without further purification. Petroleum ether (PE) refers to the fraction boiling in the 60–90 °C range. All the reactions were conducted under N2 atmosphere and monitored by TLC. Melting points were determined on an XD-4 digital micro melting point apparatus. 1H NMR spectra were recorded at 300 MHz on a Bruker Avance 300 spectrometer with TMS as the internal standard and CDCl3 or DMSO-d 6 as solvent. 13C NMR spectra were obtained on a Bruker Avance 300 (75 MHz) spectrometer with TMS as the internal standard and CDCl3 or DMSO-d 6 as solvent. 19F NMR spectra were obtained in DMSO-d 6 on a Bruker Avance 300 (282 MHz) spectrometer. High-resolution mass spectra (HRMS) were obtained on a Q-TOF6510 spectrograph (Agilent). Single crystal X-ray diffraction were performed on a Rigaku RAXIS-SPIDER IP diffractometer at 50 kV and 20 mA and data collection was performed at 273(2) K by using graphite monochromated MoKα radiation (λ = 0.71073 Å).


#

2-Amino-N-methylbenzamide (1b)

To a solution of 2-nitrobenzoic acid (1.0 g, 6 mmol) in MeOH (15 mL) was slowly added concd H2SO4 (2 mL) at r.t. over 15 min. Then, the mixture was refluxed, and the end of the reaction was monitored by TLC (eluent: PE–EtOAc, 5:1, v/v). The reaction mixture was cooled to r.t. Brine (50 mL) was added and the mixture was extracted with CH2Cl2 (2 × 30 mL). The combined organic phases were dried (MgSO4). The solvent was removed under vacuum to afford a residue. A mixture of the residue and aq MeNH2 (20 mL) was refluxed for 2 h. After cooling, brine (50 mL) was added and the mixture was extracted with EtOAc (3 × 30 mL). The combined organic phases were dried (MgSO4) and the solvent was removed under vacuum to afford an orange solid. The solid was stirred with 12 M HCl (20 mL) at 55 °C. SnCl2 (2.84 g, 15 mmol) was slowly added to the mixture and the resulting solution was stirred at 100 °C for 15 min. After cooling to r.t., white crystals separated out. The crude product was washed with aq 1 M NaOH (30 mL) and extracted with CH2Cl2 (2 × 30 mL). The combined organic phases were dried (MgSO4) and concentrated. The crude product was purified by recrystallization from EtOAc (20 mL) to afford the desired product 1b as a white solid (0.62 g, 69%); mp 75.0–76.3 °C (Lit.[ 23 ] mp 76–78 °C).


#

11-Oxo-10,11-dihydro-5H-dibenzo[b,e][1,4]diazepine-6-carbonitrile (3d); Typical Procedure

To a solution of 2-aminobenzamide (1a; 100 mg, 0.74 mmol) in anhyd DMF (10 mL) were added 2,3-difluorobenzonitrile (2e; 124 mg, 0.89 mmol) and Cs2CO3 (723 mg, 2.22 mmol) at r.t. under a dry N2 atmosphere. The resulting solution was stirred at 150 °C, and the progress of the reaction was monitored by TLC (eluent: PE–EtOAc, 5:1, v/v). The mixture was diluted with brine (100 mL) and extracted with EtOAc (3 × 30 mL). The combined organic layers were dried (MgSO4), filtered, and concentrated in vacuo. Purification of the residue by flash column chromatography (PE–EtOAc, 8:1, v/v) afforded the desired product 3d; yield: 94 mg (54%); pale yellow crystals; mp 191.8–193.2 °C.

1H NMR (300 MHz, DMSO-d 6): δ = 8.14–8.11 (dd, J = 0.9, 8.4 Hz, 1 H), 7.96–7.93 (dd, J = 1.5, 8.1 Hz, 1 H), 7.89–7.86 (dd, J = 0.9, 8.7 Hz, 1 H), 7.58–7.52 (m, 1 H), 7.37–7.32 (m, 1 H), 7.20 (s, 2 H), 6.97–6.94 (dd, J = 0.6, 8.4 Hz, 1 H), 6.75–6.70 (m, 1 H).

13C NMR (75 MHz, DMSO-d 6): δ = 165.60, 150.02, 149.16, 143.64, 134.15, 129.29, 128.91, 125.78, 116.86, 116.44, 116.21, 116.16, 105.56, 101.36.

HRMS (ESI): m/z [M + H+] calcd for C14H9N3O: 236.0818; found: 236.0814.


#

8-Fluoro-5H-dibenzo[b,e][1,4]diazepin-11(10H)-one (3a)[ 21c ]

Yield: 115 mg (68%); orange crystals; mp 219.6–222.3 °C (Lit.[ 21c ] mp 222–223 °C).

1H NMR (300 MHz, DMSO-d 6): δ = 7.90–7.87 (dd, J = 1.2, 9.3 Hz, 1 H), 7.81–7.73 (m, 2 H), 7.31–7.23 (m, 2 H), 7.08 (s, 2 H), 6.92–6.90 (d, J = 7.5 Hz, 1 H), 6.72–6.66 (m, 1 H).

13C NMR (75 MHz, DMSO-d 6): δ = 163.46, 159.74 (d, 1 J C,F = 239.2 Hz), 148.63, 148.62 (d, 3 J C,F = 15.8 Hz), 137.73, 132.60, 127.89, 119.50 (d, 3 J C,F = 10.5 Hz), 116.06, 115.41, 112.18 (d, 2 J C,F = 24.0 Hz), 106.08 (d, 4 J C,F = 2.2 Hz), 98.79 (d, 2 J C,F = 28.5 Hz).

19F NMR (282 MHz, DMSO-d 6): δ = –115.77.

HRMS (ESI): m/z [M + H+] calcd for C13H9FN2O: 229.0772; found: 229.0764.


#

6-Chloro-5H-dibenzo[b,e][1,4]diazepin-11(10H)-one (3b)[3] [22]

Yield: 101 mg (56%); orange crystals; mp 120.9–122.9 °C.

1H NMR (300 MHz, DMSO-d 6): δ = 7.94–7.91 (dd, J = 1.5, 8.1 Hz, 1 H), 7.77–7.74 (dd, J = 0.9, 8.1 Hz, 1 H), 7.51–7.48 (dd, J = 0.9, 8.1 Hz, 1 H), 7.43–7.41 (d, J = 7.8 Hz, 1 H), 7.38–7.28 (m, 1 H), 7.16 (s, 2 H), 6.94–6.92 (d, J = 7.5 Hz, 1 H), 6.73–6.68 (m, 1 H).

13C NMR (75 MHz, DMSO-d 6): δ = 164.02, 149.43, 140.78, 133.35, 132.25, 129.51, 128.51, 125.45, 120.38, 116.62, 115.94, 111.51, 106.30.

HRMS (ESI): m/z [M + H+] calcd for C13H9ClN2O: 245.0476; found: 245.0476.


#

11-Oxo-10,11-dihydro-5H-dibenzo[b,e][1,4]diazepine-8-carbonitrile (3c)

From 2c, yield: 89 mg (51%); from 2d, yield: 104 mg (60%); pale yellow crystals; mp 186.1–188.2 °C.

1H NMR (300 MHz, DMSO-d 6): δ = 8.37–8.36 (d, J = 0.9 Hz, 1 H), 7.95–7.91 (m, 2 H), 7.86–7.82 (dd, J = 1.5, 8.4 Hz, 1 H), 7.36–7.30 (m, 1 H), 7.21 (s, 2 H), 6.95–6.92 (dd, J = 0.6, 8.4 Hz, 1 H), 6.74–6.68 (m, 1 H).

13C NMR (75 MHz, DMSO-d 6): δ = 166.12, 150.05, 148.48, 145.72, 134.10, 129.66, 128.85, 120.43, 119.42, 116.80, 116.07, 115.39, 107.03, 105.60.

HRMS (ESI): m/z [M + H+] calcd for C14H9N3O: 236.0818; found: 236.0839.


#

8-(Trifluoromethyl)-5H-dibenzo[b,e][1,4]diazepin-11(10H)-one (3e)[ 21c ]

Yield: 97 mg (47%); white crystals; mp 205.1–207.0 °C (Lit.[ 21c ] mp 200–202 °C).

1H NMR (300 MHz, DMSO-d 6): δ = 9.94 (s, 1 H), 7.96–7.94 (d, = 2.7 Hz, 1 H), 7.92 (s, 1 H), 7.77–7.72 (m, 2 H), 7.27–7.22 (m, 1 H), 6.80–6.77 (d, J = 7.2 Hz, 1 H), 6.64–6.60 (m, 1 H), 6.46 (s, 1 H).

13C NMR (75 MHz, DMSO-d 6): δ = 167.56, 150.18, 139.28, 132.81, 128.85, 128.84, 127.52, 126.64 (q, 2 J C,F = 32.2 Hz), 126.50 (q, 3 J C,F = 3.75 Hz), 123.41 (q, 1 J C,F = 270.8 Hz), 124.43 (q, 3 J C,F = 3.38 Hz), 116.81, 114.97, 113.52.

19F NMR (282 MHz, DMSO-d 6): δ = –60.75.

HRMS (ESI): m/z [M + H+] calcd for C14H9F3N2O: 279.0740; found: 279.1576.


#

6-Methyl-5H-dibenzo[b,e][1,4]diazepin-11(10H)-one (3f)

Yield: 111 mg (67%); orange crystals; mp 136.1–138.2 °C.

1H NMR (300 MHz, DMSO-d 6): δ = 11.26 (s, 1 H), 8.72 (s, 1 H), 8.19–8.16 (d, J = 8.7 Hz, 1 H), 7.66––7.63 (d, J = 8.1 Hz, 1 H), 7.33–7.26 (dd, J = 7.5, 15.6 Hz, 1 H), 7.01–6.98 (d, J = 8.4 Hz, 1 H), 6.79–6.73 (dd, J = 7.5, 11.7 Hz, 2 H), 5.78 (s, 1 H), 2.48 (s, 3 H).

13C NMR (75 MHz, DMSO-d 6): δ = 168.00, 149.94, 147.95, 135.49, 134.47, 133.59, 127.47, 125.97, 124.04, 122.01, 117.79, 117.19, 114.77, 22.22.

HRMS (ESI): m/z [M + H+] calcd for C14H12N2O: 225.1022; found: 225.1032.


#

8-Chloro-5H-dibenzo[b,e][1,4]diazepin-11(10H)-one (3g)[3] [22]

Yield: 108 mg (60%); pale yellow crystals; mp 231.2–232.8 °C (Lit.[ 3 ] mp 232–233 °C).

1H NMR (300 MHz, DMSO-d 6): δ = 7.95–7.94 (dd, J = 2.1, 8.4 Hz, 1 H), 7.91–7.88 (dd, J = 1.5, 8.1 Hz, 1 H), 7.80–7.77 (d, J = 8.4 Hz, 1 H), 7.46–7.42 (dd, J = 2.1, 8.4 Hz, 1 H), 7.33–7.27 (m, 1 H), 7.14 (s, 2 H), 6.94–6.91 (dd, J = 0.6, 8.4 Hz, 1 H), 6.72–6.67 (m, 1 H).

13C NMR (75 MHz, DMSO-d 6): δ = 164.02, 149.43, 140.78, 133.35, 132.25, 129.51, 128.51, 125.45, 120.38, 116.62, 115.94, 111.51, 106.30.

HRMS (ESI): m/z [M + H+] calcd for C13H9ClN2O: 245.0476; found: 245.0480.


#

10-Methyl-11-oxo-10,11-dihydro-5H-dibenzo[b,e][1,4]diazepine-9-carbonitrile (3i)

Yield: 166 mg (90%); white crystals; mp 141.5–143.0 °C.

1H NMR (300 MHz, DMSO-d 6): δ = 7.92–7.89 (dd, J = 1.5, 7.8 Hz, 1 H), 7.42–7.35 (m, 3 H), 7.20–7.17 (dd, J = 8.1 Hz, 1 H), 7.14–7.08 (m, 1 H), 6.99–6.96 (dd, J = 0.9, 8.1 Hz, 1 H), 6.06 (s, 1 H), 3.53 (s, 3 H).

13C NMR (75 MHz, DMSO-d 6): δ = 169.39, 157.31, 153.99, 143.20, 131.41, 128.73, 126.62, 123.83, 120.62, 120.35, 119.24, 118.42, 115.01, 108.46, 26.16.

HRMS (ESI): m/z [M + H+] calcd for C15H11N3O: 250.0975; found: 250.0993.


#

2-[(2-Nitrophenyl)amino]benzamide (8)

From 2i, yield: 113 mg (60%); from 2j, yield: 104 mg (55%); orange­ crystals; mp 201.3–203.2 °C.

1H NMR (300 MHz, DMSO-d 6): δ = 11.22 (s, 1 H), 8.14–8.11 (dd, J = 1.2, 8.4 Hz, 2 H), 7.75–7.72 (dd, J = 1.2, 7.8 Hz, 1 H), 7.60–7.43 (m, 5 H), 7.15–7.10 (m, 1 H), 7.02–6.96 (m, 1 H).

13C NMR (75 MHz, DMSO-d 6): δ = 170.00, 139.65, 139.26, 135.91, 135.53, 131.41, 129.13, 126.25, 124.39, 122.23, 120.05, 119.47, 117.88.

HRMS (ESI): m/z [M + H+] calcd for C13H11N3O3: 258.0834; found: 258.0886.


#

2-(Tetrahydro-2H-pyran-2-yl)-5,11-dihydro-1H-benzo[e]pyridazino[4,5-b][1,4]diazepine-1,10(2H)-dione (5)

To a solution of 2-aminobenzamide (1a; 100 mg, 0.74 mmol) in anhyd DMF (10 mL) were added 4,5-dichloro-2-(tetrahydro-2H-pyran-2-yl)pyridazin-3(2H)-one (4; 196 mg, 0.89 mmol) and NaH (60%, 89 mg, 2.22 mmol) at r.t. under a dry N2 atmosphere: The mixture was stirred for 2 h at 80 °C and then quenched with brine (100 mL).The precipitated crude product was purified by recrystallization from EtOAc (20 mL) to afford the desired product 5 as an orange solid; yield: 194 mg (84%); orange crystals; mp 271.8–273.2 °C.

1H NMR (300 MHz, DMSO-d 6): δ = 9.81 (s, 1 H), 7.72–7.69 (dd, = 1.0, 9.2 Hz, 2 H), 7.61–7.66 (s, 1 H), 7.33–7.29 (m, 1 H), 7.11–7.09 (d, J = 8.0 Hz, 1 H), 6.87–6.83 (dd, J = 7.6, 15 Hz, 1 H), 5.84–5.81 (dd, J = 1.9,10.8 Hz, 1 H), 3.96–3.93 (d, J = 11.0 Hz, 1 H), 3.61–3.54 (m, 1 H), 2.10–2.00 (m, 1 H), 1.94–1.91 (d, J = 12.0 Hz, 1 H), 1.71–1.60 (m, 2 H), 1.51–1.46 (m, 2 H).

13C NMR (75 MHz, DMSO-d 6): δ = 167.11, 156.02, 146.05, 134.84, 133.64, 132.88, 128.67, 122.62, 121.68, 120.72, 120.50, 83.22, 67.92, 28.35, 25.12, 22.75.

HRMS (ESI): m/z [M + H+] calcd for C16H16N4O3: 313.1295; found: 313.1291.


#
#

Acknowledgment

We are grateful to the National Science Foundation of China (No. 21172131) and the State Key Laboratory of Natural and Biomimetic Drugs of Peking University (No. K20090205) for financial support of this research.

Supporting Information

  • References

  • 1 These authors contributed equally to this work.
    • 2a Monro AM, Quinton RM, Wrigley TI. J. Med. Chem. 1963; 6: 255
    • 2b Huang A, Liu F, Zhan C, Liu Y, Ma C. Org. Biomol. Chem. 2011; 9: 7351
    • 2c Liu Y, Chu C, Huang A, Zhan C, Ma Y, Ma C. ACS Comb. Sci. 2011; 13: 547
    • 3a Capuano B, Crosby IT, Lloyd EJ, Taylor DA. Aust. J. Chem. 2002; 55: 565
    • 3b Liao Y, DeBoer P, Meier E, Wikström H. J. Med. Chem. 1997; 40: 4146
  • 4 Coyne WE, Cusic JW. J. Med. Chem. 1967; 10: 541
    • 5a Hasvold LA, Wang L, Przytulinska M, Xiao Z, Chen Z, Gu W.-Z, Merta PJ, Xue J, Kovar P, Zhang H, Park C, Sowin TJ, Rosenberg SH, Lin N.-H. Bioorg. Med. Chem. Lett. 2008; 18: 2311
    • 5b Murugesan N, Gu Z, Lee V, Webb ML, Liu EC.-K, Hermsmeier M, Hunt JT. Bioorg. Med. Chem. Lett. 1995; 5: 253
  • 6 Thuston DE, Bose DS. Chem. Rev. 1994; 94: 433
    • 7a Breslin HJ, Kukla MJ, Ludovici DW, Mohrbacher R, Ho W, Miranda M, Rodgers JD, Hitchens TK, Leo G, Gauthier DA, Ho CY, Scott MK, De Clercq E, Pauwels R, Andries K, Janssen MA. C, Janssen PA. J. Med. Chem. 1995; 38: 771
    • 7b Kukla MJ, Breslin HJ, Diamond CJ, Grous PP, Ho CY, Miranda M, Rodgers JD, Sherrill RG, De Clercq E, Pauwels R, Andries K, Moens LJ, Janssen MA. C, Janssen PA. J. J. Med. Chem. 1991; 34: 3187
  • 8 Albright JD, Feich MF, Santos EG. D, Dusza JP, Sum FW, Venkatesan AM, Coupet J, Chan PS, Ru X, Mazandarani H, Bailey T. J. Med. Chem. 1998; 41: 2442
    • 9a Capuano B, Crosby IT, McRobb FM, Podloucka A, Taylor DA, Vom A, Yuriev E. Aust. J. Chem. 2010; 63: 116
    • 9b Matloubi H, Ghandi M, Zarrindast M.-R, Saemian N. Appl. Radiat. Isot. 2001; 55: 789
    • 9c Sasikumar TK, Burnett DA, Zhang H, Smith-Torhan A, Fawzi A, Lachowicz JE. Bioorg. Med. Chem. Lett. 2006; 16: 4543
    • 9d Hunziker F, Kunzle F, Schmutz J, Schindler O. Helv. Chim. Acta 1964; 47: 1163
    • 9e Hunziker F, Fischer E, Schmutz J. Helv. Chim. Acta 1967; 50: 1588
    • 9f Schmutz J, Kunzle F, Hunziker F, Gauch R. Helv. Chim. Acta 1967; 50: 245
    • 9g Liao Y, Venhuis BJ, Rodenhuis N, Timmerman W, Wikström H. J. Med. Chem. 1999; 42: 2235
    • 10a Sridhara AM, Reddy KR. V, Keshavayya J, Goud PS. K, Somashekar BC, Bose P, Peethambar SK, Gaddam SK. Eur. J. Med. Chem. 2010; 45: 4983
    • 10b Prime ME, Courtney SM, Brookfield FA, Marston RW, Walker V, Warne J, Boyd AE, Kairies NA, Saal W, Limberg A, Georges G, Engh RA, Goller B, Rueger P, Rueth M. J. Med. Chem. 2011; 54: 312
    • 10c Del OlmoE, Barboza B, Ybarra MI, Lopez-Perez JL, Carron R, Sevilla MA, Boselli C, San FelicianoA. Bioorg. Med. Chem. Lett. 2006; 16: 2786
    • 10d Napoletano M, Norcini G, Pellacini F, Marchini F, Morazzoni G, Ferlenga P, Pradella L. Bioorg. Med. Chem. Lett. 2000; 10: 2235
    • 10e Ma C, Liu SJ, Xin L, Falck JR, Shin DS. Tetrahedron 2006; 62: 9002
    • 10f Cho SD, Song SY, Park YD, Kim JJ, Joo WH, Shiro M, Falck JR, Shin DS, Yoon YJ. Tetrahedron Lett. 2003; 44: 8995
    • 10g Ma C, Cho SD, Falck JR, Shin DS. Synth. Commun. 2004; 34: 1399
    • 10h Liu Y, Ma Y, Zhan C, Huang A, Ma C. Synlett 2012; 23: 255
    • 10i Huang A, Qiao Z, Zhang X, Yu W, Zheng Q, Ma Y, Ma C. Tetrahedron 2012; 68: 906
  • 11 Sayed GH, Sayed MA, Mahmoud MR, Shaaban SS. Egypt. J. Chem. 2002; 45: 767 ; Chem. Abstr. 2003, 141, 243501
  • 12 Piaz VD, Ciciani G, Giovannoni MP. Synthesis 1994; 669
  • 13 Katrusiak B, Unlu S, Banoglu E, Kupeli E, Yesilada E, Sahin MF. Arch. Pharm. (Weinheim, Ger.) 2003; 336: 406
  • 14 Verhelst T, Verbeeck S, Ryabtsova O, Depraetere S, Maes BU. W. Org. Lett. 2011; 13: 272
    • 15a Svete J. J. Heterocycl. Chem. 2005; 42: 361
    • 15b Schwartz A, Beke G, Kovári Z, Böcskey Z, Farkas Ö, Mátyus P. J. Mol. Struct. 2000; 528: 49
    • 16a Nardi M, Cozza A, De Nino A, Oliverio M, Procopio A. Synthesis 2012; 44: 800
    • 16b Tiberghien AC, Evans DA, Kiakos K, Martin CR. H, Hartley JA, Thurston DE, Howard PW. Bioorg. Med. Chem. Lett. 2008; 18: 2073
    • 16c Beccalli EM, Broggini G, Paladino G, Penoni A, Zoni C. J. Org. Chem. 2004; 69: 5627
    • 16d Okubo T, Yoshikawa R, Chaki S, Okuyama S, Nakazato A. Bioorg. Med. Chem. 2004; 12: 3569
  • 17 Wang L, Sullivan GM, Hexamer LA, Hasvold LA, Thalji R, Przytulinska M, Tao Z.-F, Li G, Chen Z, Xiao Z, Gu W.-Z, Xue J, Bui M.-H, Merta P, Kovar P, Bouska JJ, Zhang H, Park C, Stewart KD, Sham HL, Sowin TJ, Rosenberg SH, Lin N.-H. J. Med. Chem. 2007; 50: 4162
  • 18 Joshua AV, Sharma SK, Strelkov A, Scott JR, Martin-Iverson MT, Abrams DN, Silverstone PH, McEwan AJ. B. Bioorg. Med. Chem. Lett. 2007; 17: 4066
  • 19 Diao X, Xu L, Zhu W, Jiang Y, Wang H, Guo Y, Ma D. Org. Lett. 2011; 13: 6422
    • 20a Su J, Tang H, McKittrick BA, Burnett DA, Zhang H, Smith-Torhan A, Fawzi A, Lachowicz J. Bioorg. Med. Chem. Lett. 2006; 16: 4548
    • 20b Zhao H.-Y, Liu G. J. Comb. Chem. 2007; 9: 1164
    • 20c Elmore CS, Dorff PN, Heys JR. J. Label. Compd. Radiopharm 2010; 53: 787
    • 20d Al-Tel TH, Al-Qawasmeh RA, Schmidt MF, Al-Aboudi A, Rao SN, Sabri SS, Voelter W. J. Med. Chem. 2009; 52: 6484
    • 20e Broggini G, Marchi ID, Martinelli M, Paladino G, Penoni A. Lett. Org. Chem. 2004; 1: 221
    • 20f Hanze AR, Strube RE, Greig ME. J. Med. Chem. 1963; 6: 767
    • 20g Beccalli EM, Broggini G, Paladino G, Zoni C. Tetrahedron 2005; 61: 61
    • 20h Zhang L, Meier W, Wats E, Costello TD, Ma P, Ensinger CL, Rodgers JM, Jacobson IC, Rajagopalan P. Tetrahedron Lett. 1995; 36: 8387
    • 21a Levy O, Erez M, Varon D, Keinan E. Bioorg. Med. Chem. Lett. 2001; 11: 2921
    • 21b Basolo L, Beccalli EM, Borsini E, Broggini G, Khansaa M, Rigamonti M. Eur. J. Org. Chem. 2010; 9: 1694
    • 21c Tsvelikhovsky D, Buchwald SL. J. Am. Chem. Soc. 2011; 133: 14228
    • 21d Lu S.-M, Alper H. J. Am. Chem. Soc. 2005; 127: 14776
    • 21e Bunce RA, Schammerhorn JE. J. Heterocycl. Chem. 2006; 43: 1031
    • 21f Tardibono LP, Miller MJ. Org. Lett. 2009; 11: 1575
    • 21g Majumdar KC, Ganai S. Synlett 2011; 1881
    • 22a Leyva-Pérez A, Cabrero-Antonino JR, Corma A. Tetrahedron 2010; 66: 8203
    • 22b Binaschi M, Boldetti A, Gianni M, Maggi CA, Gensini M, Bigioni M, Parlani M, Giolitti A, Fratelli M, Valli C, Terao M, Garattini E. ACS Med. Chem. Lett. 2010; 1: 411
    • 23a Tu T, Wang Z, Liu Z, Feng X, Wang Q. Green Chem. 2012; 14: 921
    • 23b Mahiwal K, Kumar P, Narasimhan B. Med. Chem. Res. 2012; 21: 293
  • 24 Ma C, Liu S-J, Xin L, Falck JR, Shin D-S. Tetrahedron 2006; 62: 9002

  • References

  • 1 These authors contributed equally to this work.
    • 2a Monro AM, Quinton RM, Wrigley TI. J. Med. Chem. 1963; 6: 255
    • 2b Huang A, Liu F, Zhan C, Liu Y, Ma C. Org. Biomol. Chem. 2011; 9: 7351
    • 2c Liu Y, Chu C, Huang A, Zhan C, Ma Y, Ma C. ACS Comb. Sci. 2011; 13: 547
    • 3a Capuano B, Crosby IT, Lloyd EJ, Taylor DA. Aust. J. Chem. 2002; 55: 565
    • 3b Liao Y, DeBoer P, Meier E, Wikström H. J. Med. Chem. 1997; 40: 4146
  • 4 Coyne WE, Cusic JW. J. Med. Chem. 1967; 10: 541
    • 5a Hasvold LA, Wang L, Przytulinska M, Xiao Z, Chen Z, Gu W.-Z, Merta PJ, Xue J, Kovar P, Zhang H, Park C, Sowin TJ, Rosenberg SH, Lin N.-H. Bioorg. Med. Chem. Lett. 2008; 18: 2311
    • 5b Murugesan N, Gu Z, Lee V, Webb ML, Liu EC.-K, Hermsmeier M, Hunt JT. Bioorg. Med. Chem. Lett. 1995; 5: 253
  • 6 Thuston DE, Bose DS. Chem. Rev. 1994; 94: 433
    • 7a Breslin HJ, Kukla MJ, Ludovici DW, Mohrbacher R, Ho W, Miranda M, Rodgers JD, Hitchens TK, Leo G, Gauthier DA, Ho CY, Scott MK, De Clercq E, Pauwels R, Andries K, Janssen MA. C, Janssen PA. J. Med. Chem. 1995; 38: 771
    • 7b Kukla MJ, Breslin HJ, Diamond CJ, Grous PP, Ho CY, Miranda M, Rodgers JD, Sherrill RG, De Clercq E, Pauwels R, Andries K, Moens LJ, Janssen MA. C, Janssen PA. J. J. Med. Chem. 1991; 34: 3187
  • 8 Albright JD, Feich MF, Santos EG. D, Dusza JP, Sum FW, Venkatesan AM, Coupet J, Chan PS, Ru X, Mazandarani H, Bailey T. J. Med. Chem. 1998; 41: 2442
    • 9a Capuano B, Crosby IT, McRobb FM, Podloucka A, Taylor DA, Vom A, Yuriev E. Aust. J. Chem. 2010; 63: 116
    • 9b Matloubi H, Ghandi M, Zarrindast M.-R, Saemian N. Appl. Radiat. Isot. 2001; 55: 789
    • 9c Sasikumar TK, Burnett DA, Zhang H, Smith-Torhan A, Fawzi A, Lachowicz JE. Bioorg. Med. Chem. Lett. 2006; 16: 4543
    • 9d Hunziker F, Kunzle F, Schmutz J, Schindler O. Helv. Chim. Acta 1964; 47: 1163
    • 9e Hunziker F, Fischer E, Schmutz J. Helv. Chim. Acta 1967; 50: 1588
    • 9f Schmutz J, Kunzle F, Hunziker F, Gauch R. Helv. Chim. Acta 1967; 50: 245
    • 9g Liao Y, Venhuis BJ, Rodenhuis N, Timmerman W, Wikström H. J. Med. Chem. 1999; 42: 2235
    • 10a Sridhara AM, Reddy KR. V, Keshavayya J, Goud PS. K, Somashekar BC, Bose P, Peethambar SK, Gaddam SK. Eur. J. Med. Chem. 2010; 45: 4983
    • 10b Prime ME, Courtney SM, Brookfield FA, Marston RW, Walker V, Warne J, Boyd AE, Kairies NA, Saal W, Limberg A, Georges G, Engh RA, Goller B, Rueger P, Rueth M. J. Med. Chem. 2011; 54: 312
    • 10c Del OlmoE, Barboza B, Ybarra MI, Lopez-Perez JL, Carron R, Sevilla MA, Boselli C, San FelicianoA. Bioorg. Med. Chem. Lett. 2006; 16: 2786
    • 10d Napoletano M, Norcini G, Pellacini F, Marchini F, Morazzoni G, Ferlenga P, Pradella L. Bioorg. Med. Chem. Lett. 2000; 10: 2235
    • 10e Ma C, Liu SJ, Xin L, Falck JR, Shin DS. Tetrahedron 2006; 62: 9002
    • 10f Cho SD, Song SY, Park YD, Kim JJ, Joo WH, Shiro M, Falck JR, Shin DS, Yoon YJ. Tetrahedron Lett. 2003; 44: 8995
    • 10g Ma C, Cho SD, Falck JR, Shin DS. Synth. Commun. 2004; 34: 1399
    • 10h Liu Y, Ma Y, Zhan C, Huang A, Ma C. Synlett 2012; 23: 255
    • 10i Huang A, Qiao Z, Zhang X, Yu W, Zheng Q, Ma Y, Ma C. Tetrahedron 2012; 68: 906
  • 11 Sayed GH, Sayed MA, Mahmoud MR, Shaaban SS. Egypt. J. Chem. 2002; 45: 767 ; Chem. Abstr. 2003, 141, 243501
  • 12 Piaz VD, Ciciani G, Giovannoni MP. Synthesis 1994; 669
  • 13 Katrusiak B, Unlu S, Banoglu E, Kupeli E, Yesilada E, Sahin MF. Arch. Pharm. (Weinheim, Ger.) 2003; 336: 406
  • 14 Verhelst T, Verbeeck S, Ryabtsova O, Depraetere S, Maes BU. W. Org. Lett. 2011; 13: 272
    • 15a Svete J. J. Heterocycl. Chem. 2005; 42: 361
    • 15b Schwartz A, Beke G, Kovári Z, Böcskey Z, Farkas Ö, Mátyus P. J. Mol. Struct. 2000; 528: 49
    • 16a Nardi M, Cozza A, De Nino A, Oliverio M, Procopio A. Synthesis 2012; 44: 800
    • 16b Tiberghien AC, Evans DA, Kiakos K, Martin CR. H, Hartley JA, Thurston DE, Howard PW. Bioorg. Med. Chem. Lett. 2008; 18: 2073
    • 16c Beccalli EM, Broggini G, Paladino G, Penoni A, Zoni C. J. Org. Chem. 2004; 69: 5627
    • 16d Okubo T, Yoshikawa R, Chaki S, Okuyama S, Nakazato A. Bioorg. Med. Chem. 2004; 12: 3569
  • 17 Wang L, Sullivan GM, Hexamer LA, Hasvold LA, Thalji R, Przytulinska M, Tao Z.-F, Li G, Chen Z, Xiao Z, Gu W.-Z, Xue J, Bui M.-H, Merta P, Kovar P, Bouska JJ, Zhang H, Park C, Stewart KD, Sham HL, Sowin TJ, Rosenberg SH, Lin N.-H. J. Med. Chem. 2007; 50: 4162
  • 18 Joshua AV, Sharma SK, Strelkov A, Scott JR, Martin-Iverson MT, Abrams DN, Silverstone PH, McEwan AJ. B. Bioorg. Med. Chem. Lett. 2007; 17: 4066
  • 19 Diao X, Xu L, Zhu W, Jiang Y, Wang H, Guo Y, Ma D. Org. Lett. 2011; 13: 6422
    • 20a Su J, Tang H, McKittrick BA, Burnett DA, Zhang H, Smith-Torhan A, Fawzi A, Lachowicz J. Bioorg. Med. Chem. Lett. 2006; 16: 4548
    • 20b Zhao H.-Y, Liu G. J. Comb. Chem. 2007; 9: 1164
    • 20c Elmore CS, Dorff PN, Heys JR. J. Label. Compd. Radiopharm 2010; 53: 787
    • 20d Al-Tel TH, Al-Qawasmeh RA, Schmidt MF, Al-Aboudi A, Rao SN, Sabri SS, Voelter W. J. Med. Chem. 2009; 52: 6484
    • 20e Broggini G, Marchi ID, Martinelli M, Paladino G, Penoni A. Lett. Org. Chem. 2004; 1: 221
    • 20f Hanze AR, Strube RE, Greig ME. J. Med. Chem. 1963; 6: 767
    • 20g Beccalli EM, Broggini G, Paladino G, Zoni C. Tetrahedron 2005; 61: 61
    • 20h Zhang L, Meier W, Wats E, Costello TD, Ma P, Ensinger CL, Rodgers JM, Jacobson IC, Rajagopalan P. Tetrahedron Lett. 1995; 36: 8387
    • 21a Levy O, Erez M, Varon D, Keinan E. Bioorg. Med. Chem. Lett. 2001; 11: 2921
    • 21b Basolo L, Beccalli EM, Borsini E, Broggini G, Khansaa M, Rigamonti M. Eur. J. Org. Chem. 2010; 9: 1694
    • 21c Tsvelikhovsky D, Buchwald SL. J. Am. Chem. Soc. 2011; 133: 14228
    • 21d Lu S.-M, Alper H. J. Am. Chem. Soc. 2005; 127: 14776
    • 21e Bunce RA, Schammerhorn JE. J. Heterocycl. Chem. 2006; 43: 1031
    • 21f Tardibono LP, Miller MJ. Org. Lett. 2009; 11: 1575
    • 21g Majumdar KC, Ganai S. Synlett 2011; 1881
    • 22a Leyva-Pérez A, Cabrero-Antonino JR, Corma A. Tetrahedron 2010; 66: 8203
    • 22b Binaschi M, Boldetti A, Gianni M, Maggi CA, Gensini M, Bigioni M, Parlani M, Giolitti A, Fratelli M, Valli C, Terao M, Garattini E. ACS Med. Chem. Lett. 2010; 1: 411
    • 23a Tu T, Wang Z, Liu Z, Feng X, Wang Q. Green Chem. 2012; 14: 921
    • 23b Mahiwal K, Kumar P, Narasimhan B. Med. Chem. Res. 2012; 21: 293
  • 24 Ma C, Liu S-J, Xin L, Falck JR, Shin D-S. Tetrahedron 2006; 62: 9002

Zoom Image
Figure 1 Structures of olanzapine, clozapine and viramune
Zoom Image
Scheme 1 One-pot synthesis of 1,4-benzodiazepines
Zoom Image
Scheme 2 One-pot synthesis of a pyridazinobenzodiazepine
Zoom Image
Scheme 3 Reaction of 1a with 2i and 2j
Zoom Image
Scheme 4 A proposed reaction mechanism
Zoom Image
Figure 2 Single crystal X-ray structure of 3i