Synlett, Table of Contents Synlett 2013; 24(7): 873-877DOI: 10.1055/s-0032-1318482 letter © Georg Thieme Verlag Stuttgart · New York Silver Ion Mediated In Situ Synthesis of Mixed Diaryl Sulfides from Diaryl Disulfides Prasanta Gogoi a Department of Chemistry, National Institute of Technology, Silchar 788010, Assam, India Fax: +91(3842)224797 Email: barmanpranjit@yahoo.co.in , Sandhya R. Gogoi b Department of Chemical Science, Tezpur University, Tezpur 784028, Assam, India , Mukul Kalita a Department of Chemistry, National Institute of Technology, Silchar 788010, Assam, India Fax: +91(3842)224797 Email: barmanpranjit@yahoo.co.in , Pranjit Barman* a Department of Chemistry, National Institute of Technology, Silchar 788010, Assam, India Fax: +91(3842)224797 Email: barmanpranjit@yahoo.co.in › Author Affiliations Recommend Article Abstract Buy Article All articles of this category Abstract The AgNO3-mediated in situ scission of aromatic disulfides in the presence of electron-rich aromatic compounds results in the efficient synthesis of diaryl sulfides. Key features of this new methodology are high yields of aromatic and heteroaromatic sulfides, mild reaction conditions, simplicity, simple workup, and avoiding foul-smelling reactants like thiols. Key words Key wordsin situ synthesis - disulfide - sulfenylation - metal-mediated Full Text References References and Notes 1a Forbes DC, Bettigeri SV, Al-Azzeh NN, Finnigan BP, Kundukulam JA. Tetrahedron Lett. 2009; 50: 1855 1b Alcaraz M.-L, Atkinson S, Cornwall P, Foster AC, Gill DM, Humphries LA, Keegan PS, Kemp R, Merifield E, Nixon RA, Noble AJ, Obeirne D, Patel ZM, Perkins J, Rowan P, Sadler P, Singleton JT, Tornos J, Watts AJ, Woodland IA. Org. Process Res. Dev. 2005; 9: 555 1c Liu G, Link JT, Pei Z, Reilly EB, Leitza S, Nguyen B, Marsh KC, Okasinski GF, von Geldern TW, Ormes M, Fowler K, Gallatin M. J. Med. Chem. 2000; 43: 4025 2a Van Zandt MC, Jones ML, Gunn DE, Geraci LS, Jones JH, Sawicki DR, Sredy J, Jacot JL, Dicioccio AT, Petrova T, Mischler A, Podjarny AD. J. Med. Chem. 2005; 48: 3141 2b Williams TM, Ciccarone TM, MacTough SC, Rooney CS, Balani SK, Condra JH, Emini EA, Goldman ME, Greenlee WJ, Kauffman LR, O’Brien JA, Sardana VV, Schleif WA, Theoharides AD, Anderson PS. J. Med. Chem. 1993; 36: 1291 2c Silvestri R, De Martino G, La Regina G, Artico M, Massa S, Vargiu L, Mura M, Loi AG, Marceddu T, La Colla P. J. Med. Chem. 2003; 46: 2482 2d Campbell JA, Broka CA, Gong L, Walker KA. M, Wang J.-H. Tetrahedron Lett. 2004; 45: 4073 3 McKinnie BG, Ranken PF. U.S. Patent No. 4602113, (Hydrocarbylthio)phenols and their preparation, Jul 22, 1986. 4 Feuerer A, Severin T. Tetrahedron Lett. 1993; 34: 2103 5 Schlosser KM, Krasutsky AP, Hamilton HW, Reed JE, Sexton K. Org. Lett. 2004; 6: 819 6 Maeda Y, Koyabu M, Nishimura T, Uemura S. J. Org. Chem. 2004; 69: 7688 7a Alves D, Lara RG, Contreira ME, Radatz CS, Duarte LF. B, Perin G. Tetrahedron Lett. 2012; 53: 3364 7b Kelly CB, Lee CX, Leadbeater NE. Tetrahedron Lett. 2011; 52: 4587 7c Basu B, Mandal B, Das S, Kundu S. Tetrahedron Lett. 2009; 50: 5523 7d Feng Y, Wang H, Sun F, Li Y, Fu X, Jin K. Tetrahedron 2009; 65: 9737 7e Rout L, Sen TK, Punniyamurthy T. Angew. Chem. Int. Ed. 2007; 46: 5583 7f Bates CG, Gujadhur RK, Venkataraman D. Org. Lett. 2002; 4: 2803 7g Bates CG, Saejueng P, Doherty MQ, Venkataraman D. Org. Lett. 2004; 6: 5005 7h Taniguchi N. J. Org. Chem. 2007; 72: 1241 7i Chen Y.-J, Chen H.-H. Org. Lett. 2006; 8: 5609 7j Ley SV, Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400 7k Ranken PF, McKinnie BG. J. Org. Chem. 1989; 54: 2985 8a Fang X.-L, Tang R.-Y, Zhong P, Li J.-H. Synthesis 2009; 4183 8b Correa A, Carril M, Bolm C. Angew. Chem. Int. Ed. 2008; 47: 2880 9a Taniguchi N. J. Org. Chem. 2004; 69: 6904 9b Millois C, Diaz P. Org. Lett. 2000; 2: 1705 9c Percec V, Bae J.-Y, Hill DH. J. Org. Chem. 1995; 60: 6895 9d Takagi G. Chem. Lett. 1986; 15: 1379 10 Wong Y.-C, Jayanth TT, Cheng C.-H. Org. Lett. 2006; 8: 5613 11a Lee J.-Y, Lee PH. J. Org. Chem. 2008; 73: 7413 11b Fernandez-Rodrýguez MA, Shen Q, Hartwig JF. J. Am. Chem. Soc. 2006; 128: 2180 11c Murata M, Buchwald SL. Tetrahedron 2004; 60: 7397 11d Mann G, Baranano D, Hartwig JF, Rheingold AL, Guzei IA. J. Am. Chem. Soc. 1998; 120: 9205 11e Arnould JC, Didelot M, Cadilhac C, Pasquet MJ. Tetrahedron Lett. 1996; 37: 4523 11f Ishiyama T, Mori M, Suzuki A, Miyaura N. J. Organomet. Chem. 1996; 525: 225 11g Ciattini PG, Morera E, Ortar G. Tetrahedron Lett. 1995; 36: 4133 12a Reddy VP, Swapna K, Kumar AV, Rao KR. J. Org. Chem. 2009; 74: 3189 12b Reddy VP, Kumar AV, Swapna K, Rao KR. Org. Lett. 2009; 11: 1697 13 Ge W, Wei Y. Green Chem. 2012; 14: 2066 14a Borisov AV, Matshulevich ZV, Osmanov VK, Borisova GN, Mammadova GZ, Maharramov AM, Khrustalev VN. Chem. Heterocycl. Compd. 2012; 48: 1098 14b Karasch N, Langford RB. J. Org. Chem. 1963; 28: 1903 15a Eccles KS, Elcoate CJ, Lawrence SE, Maguire AR. ARKIVOC 2010; (ix): 216 15b Barman P, Bhattacharjee T, Sarma R. Acta Crystallogr., Sect. E 2010; 66: 1943 16 Song M, Fan C. Acta Crystallogr., Sect. E 2009; 65: 2835 17a Typical Procedure: AgNO3 (0.17 g, 1 mmol), and disulfide 1b (0.30 g, 1 mmol), were added to EtOH (1.0 mL) and DMF (1.0 mL) and stirred at r.t. for 5 min. After that, β-naphthol 2f (0.14 g, 1 mmol) was added. Then the contents were refluxed with stirring for 10 h at 110 °C. The precipitated silver mercaptide was filtered and the solvent removed at reduced pressure. The residue obtained was extracted with CH2Cl2 and dried over anhyd Na2SO4. Removal of the CH2Cl2 under reduced pressure gave sulfide 3f which was purified by column chromatography (EtOAc–hexane, 1:9). 17b Synthesis of Aryl Benzyl Thioethers 4: Silver mercaptide (0.26 g, 1 mmol) and benzyl chloride (0.15 g, 1.2 mmol) in EtOH (5 mL) were refluxed for 6 h. Then NaOH (0.2 g, 5 mmol) was added and reflux continued for an additional 2 h. Upon cooling, NaOH (2 M, 30 mL) was added to the reaction mixture followed by extraction with CH2Cl2. The organic phase was washed with NaOH (2 M, 2 × 25 mL), H2O (25 mL) and brine (25 mL), dried over anhyd Na2SO4, filtered and the solvent removed under reduced pressure to give the aryl benzyl thioether. Representative Analytical Data; 1-(2-Nitrophenylthio)napthalen-2-ol (3f): The title compound was prepared according to the typical procedure in 75% yield (0.223 g) as a yellow solid (mp 170–171 °C). IR (KBr): 3435, 2905, 2845, 1588, 1545, 1497, 1335, 1055, 940, 865, 746, 689 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.27 (d, J = 7.9 Hz, 1 H), 8.16 (d, J = 8.6 Hz, 1 H), 7.86–7.97 (m, 6 H), 7.23 (s, 1 H), 6.84 (d, J = 7.6 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 161.2, 156.3, 155.3, 153.1, 148.6, 143.5, 138.4, 136.7, 130.2, 129.1, 128.5, 127.2, 118.6, 117.4, 115.0. HRMS (ESI): m/z [M + H+] calcd for C16H11NO3S: 298.0460; found: 298.0463. Anal. Calcd for C16H11NO3S: C, 64.63; H, 3.73; N, 4.71. Found: C, 64.58; H, 3.91; N, 4.88. 18 Harris JF. Jr. J. Org. Chem. 1981; 46: 268 19 Davis FA, Slegeir WA. R, Evans S, Schwartz A, Goff DL, Palmer R. J. Org. Chem. 1977; 42: 967 For reviews, see: 20a Davis FA. J. Org. Chem. 2006; 71: 8993 20b Davis FA, Nadir UK. Org. Prep. Proced. Int. 1979; 11: 33 21 Davis FA, Johnston RP. II. J. Org. Chem. 1972; 37: 859 22 Arguello JE, Schmidt LC, Penenory AB. Org. Lett. 2003; 5: 4133