Z Geburtshilfe Neonatol 2012; 216(04): 177-185
DOI: 10.1055/s-0032-1321836
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Pathogenetische Effekte der prä- und postnatalen Inflammationsreaktion in den Lungen

Effects of Antenatal Inflammation on the Developing Lung
S. Kunzmann
1   Universitäts-Kinderklinik Würzburg
,
J.J. P. Collins
2   Department of Pediatrics, Maastricht University Medical Center, School of Mental Health and Neuroscience, School of Oncology and Developmental Biology, Maastricht, The Netherland
,
E. Kuypers
2   Department of Pediatrics, Maastricht University Medical Center, School of Mental Health and Neuroscience, School of Oncology and Developmental Biology, Maastricht, The Netherland
,
A. W. Gavilanes
2   Department of Pediatrics, Maastricht University Medical Center, School of Mental Health and Neuroscience, School of Oncology and Developmental Biology, Maastricht, The Netherland
,
B. W. Kramer
2   Department of Pediatrics, Maastricht University Medical Center, School of Mental Health and Neuroscience, School of Oncology and Developmental Biology, Maastricht, The Netherland
› Institutsangaben
Weitere Informationen

Publikationsverlauf

eingereicht 28. Mai 2012

angenommen nach Überarbeitung26. Juni 2012

Publikationsdatum:
27. August 2012 (online)

Zusammenfassung

Die fetale Entwicklung der Lunge und des Immunsystems ist sehr plastisch und kann von diversen endogenen und exogenen Faktoren beeinflusst werden. In den letzten Jahren konnte mithilfe von verschiedenen Tiermodellen Erkenntnisse über die Wirkung von Chorioamnionitis auf die Lungenreifung und -entwicklung sowie auf das sich entwickelnde Immunsystem gewonnen werden. Dabei zeigte sich, dass Chorioamnionitis zu einer Verletzung der Lunge durch eine Entzündungsreaktion und sich daran anschließenden Umbauprozessen führt. Als eines der wesentlichen Zytokine, das in die Vermittlung dieser Prozesse involviert ist, konnte Interleukin-1 (IL-1) identifiziert werden. Bezüglich der Lungenreifung konnte gezeigt werden, dass Chorioamnionitis zu einer Induktion der Synthese von Surfactant Proteinen und Lipiden in der fetalen Lunge führt und somit den positiven Einfluss von Chorioamnionitis auf das Atemnotsyndrom (RDS) funktionell erklären hilft. Auf der anderen Seite kann Chorioamnionitis auch strukturelle Veränderungen in der Lunge bewirken, verbunden mit einer Modulation von Wachstumsfaktoren wie TGF-β, CTGF, FGF-10 oder BMP-4, die alle eine wesentliche Rolle in der Lungenentwicklung besitzen. Diese Veränderungen führen zu einer Vereinfachung der Alveolen und zu einer Alterierung der Blutgefäße, die den Veränderungen bei BPD sehr ähnlich sind. Chorioamnionitis beeinflusst daneben eine Vielzahl von Signalwegen der Entzündungsreaktion und embryologischen Entwicklung. Diese Signalwege beeinflussen sich gegenseitig und bilden ein fein reguliertes Netzwerk, das die Lungenentwicklung steuert. Neben Chorioamnionitis können diese Signalwege durch andere pränatale (z. B. Glukokortikoide) und postnatale Faktoren (mechanische Beatmung, Sauerstoff, Infektionen, Steroide) beeinflusst werden. Die Entwicklung der Lunge kann ebenfalls indirekt durch die Wirkung der Chorioamnionitis auf die Effizienz des fötalen Immunsystems beeinflusst werden. Chorioamnionitis kann eine Toleranz gegenüber Endotoxin (LPS Toleranz, Immunparalyse) induzieren, die wohl weiteren Schaden des Feten verhindern kann, aber auch das Risiko für postnatale Infektionen erhöht. Die postnatale Reparaturreaktion scheint in hohem Maße von pränatalen Faktoren abhängig zu sein. Daher erscheint die Hypothese von sekundären Verletzungen sehr plausibel, wobei histologische Chorioamnionitis eine Prädisposition für eine postnatal beeinträchtigte Entwicklung ist.

Abstract

The developing lung and immune systems are very plastic and their developmental pathway can be influenced by various endogenous and/or exogenous factors. In the last years translational research with various animal models has been helpful to answer some basic questions about the effect of chorioamnionitis on maturation and development of the foetal lung and immune system. Chorioamnionitis can induce a cascade of lung injury, pulmonary inflammation and remodelling in the foetal lung. Chorioamnionitis-induced IL-1 production is consistently associated with lung maturation, induced by enhancing surfactant protein and lipid synthesis. IL-1 therefore seems to be the main link between lung inflammation and lung maturation, which largely prevents RDS in preterm infants. On the other hand, chorioamnionitis can also cause structural lung changes and affect the expression of growth factors, like TGF-β, CTGF, FGF-10 or BMP-4, which are crucial for branching morphogenesis. These changes result in alveolar and microvascular simplification similar to BPD. Neonatal outcome may also be affected by chorioamnionitis by modulating the efficacy of the immune system. Chorioamnionitis can induce LPS-tolerance (endotoxin hyporesponsiveness/immunoparalysis), which may prevent further foetal lung damage but increases susceptibility to postnatal infections. The inflammatory and developmental signalling pathways affected by chorioamnionitis form delicately regulated networks, which interact with each other to control lung development. In addition to chorioamnionitis, these pathways can be affected by other prenatal (steroid) or postnatal factors (mechanical ventilation, oxygen exposure, infection, steroids). Because the postnatal response to injury appears to be highly dependent on prenatal exposures, the “secondary hit” hypothesis is very plausible, in which exposure to chorioamnionitis is a predisposition for the development of adverse neonatal outcomes.

 
  • Literatur

  • 1 Internal classification of diseases and related health problems. World Health Organization, Geneva 1992; DOI:
  • 2 Goldenberg RL, Culhane JF, Iams JD et al. Epidemiology and causes of preterm birth. Lancet 2008; 371: 75-84
  • 3 Goldenberg RL, Hauth JC, Andrews WW. Intrauterine infection and preterm delivery. N Engl J Med 2000; 342: 1500-1507
  • 4 Knox Jr IC, Hoerner JK. The role of infection in premature rupture of the membranes. Am J Obstet Gynecol 1950; 59: 190-194, illust
  • 5 Gantert M, Been JV, Gavilanes AW et al. Chorioamnionitis: a multiorgan disease of the fetus?. J Perinatol 2010; (Suppl. 30) S21-S30
  • 6 Schelonka RL, Waites KB. Ureaplasma infection and neonatal lung disease. Seminars in perinatology 2007; 31: 2-9
  • 7 Kramer BW. Chorioamnionitis – new ideas from experimental models. Neonatology 2011; 99: 320-325
  • 8 DiGiulio DB, Romero R, Amogan HP et al. Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation. PLoS One 2008; 3: e3056
  • 9 Gerber S, Vial Y, Hohlfeld P et al. Detection of Ureaplasma urealyticum in second-trimester amniotic fluid by polymerase chain reaction correlates with subsequent preterm labor and delivery. J Infect Dis 2003; 187: 518-521
  • 10 Andrews WW, Goldenberg RL, Hauth JC et al. Endometrial microbial colonization and plasma cell endometritis after spontaneous or indicated preterm versus term delivery. Am J Obstet Gynecol 2005; 193: 739-745
  • 11 Perni SC, Vardhana S, Korneeva I et al. Mycoplasma hominis and Ureaplasma urealyticum in midtrimester amniotic fluid: association with amniotic fluid cytokine levels and pregnancy outcome. Am J Obstet Gynecol 2004; 191: 1382-1386
  • 12 Thomas W, Speer CP. Chorioamnionitis: important risk factor or innocent bystander for neonatal outcome?. Neonatology 2011; 99: 177-187
  • 13 Ahlfeld SK, Conway SJ. Aberrant signaling pathways of the lung mesenchyme and their contributions to the pathogenesis of bronchopulmonary dysplasia. Birth defects research Part A, Clinical and molecular teratology 2012; 94: 3-15
  • 14 Burd I, Balakrishnan B, Kannan S. Models of fetal brain injury, intrauterine inflammation, and preterm birth. Am J Reprod Immunol 2012; 67: 287-294
  • 15 Malaeb S, Dammann O.. Fetal inflammatory response and brain injury in the preterm newborn. Journal of child neurology 2009; 24: 1119-1126
  • 16 Been JV. Histologic chorioamnionitis, fetal involvement, and antenatal steroids: effect on neonatal outcome in prterm infants. AJOG 2009; in press
  • 17 Jobe AH, Newnham JP, Willet KE et al. Endotoxin-induced lung maturation in preterm lambs is not mediated by cortisol. Am J Respir Crit Care Med 2000; 162: 1656-1661
  • 18 Moss TJ, Newnham JP, Willett KE et al. Early gestational intra-amniotic endotoxin: lung function, surfactant, and morphometry. Am J Respir Crit Care Med 2002; 165: 805-811
  • 19 Kramer BW, Moss TJ, Willet KE et al. Dose and time response after intraamniotic endotoxin in preterm lambs. Am J Respir Crit Care Med 2001; 164: 982-988
  • 20 Nitsos I, Moss TJ, Cock ML et al. Fetal responses to intra-amniotic endotoxin in sheep. J Soc Gynecol Investig 2002; 9: 80-85
  • 21 Patrick LA, Gaudet LM, Farley AE et al. Development of a guinea pig model of chorioamnionitis and fetal brain injury. Am J Obstet Gynecol 2004; 191: 1205-1211
  • 22 Bell MJ, Hallenbeck JM, Gallo V. Determining the fetal inflammatory response in an experimental model of intrauterine inflammation in rats. Pediatr Res 2004; 56: 541-546
  • 23 Normann E, Lacaze-Masmonteil T, Eaton F et al. A novel mouse model of Ureaplasma-induced perinatal inflammation: effects on lung and brain injury. Pediatr Res 2009; 65: 430-436
  • 24 Choi CW, Kim BI, Hong JS et al. Bronchopulmonary dysplasia in a rat model induced by intra-amniotic inflammation and postnatal hyperoxia: morphometric aspects. Pediatr Res 2009; 65: 323-327
  • 25 Splichal I, Trebichavsky I, Splichalova A et al. Escherichia coli administered into pig amniotic cavity appear in fetal airways and attract macrophages into fetal lungs. Physiological research/ Academia Scientiarum Bohemoslovaca 2002; 51: 523-528
  • 26 Pringle KC. Human fetal lung development and related animal models. Clin Obstet Gynecol 1986; 29: 502-513
  • 27 Watterberg KL, Demers LM, Scott SM et al. Chorioamnionitis and early lung inflammation in infants in whom bronchopulmonary dysplasia develops. Pediatrics 1996; 97: 210-215
  • 28 Been JV, Zimmermann LJ. Histological chorioamnionitis and respiratory outcome in preterm infants. Arch Dis Child Fetal Neonatal Ed 2009; 94: F218-F225
  • 29 Hartling L, Liang Y, Lacaze-Masmonteil T. Chorioamnionitis as a risk factor for bronchopulmonary dysplasia: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed 2012; 97: F8-F17
  • 30 Speer CP. Neonatal respiratory distress syndrome: an inflammatory disease?. Neonatology 2011; 99: 316-319
  • 31 Been JV, Rours IG, Kornelisse RF et al. Chorioamnionitis alters the response to surfactant in preterm infants. J Pediatr 2010; 156 (10–15) e11
  • 32 Been JV, Zimmermann LJ. Exploring the association between chorioamnionitis and respiratory outcome. Bjog. 2010; 117: 497; author reply 497-498
  • 33 Bry K, Lappalainen U, Hallman M. Intraamniotic interleukin-1 accelerates surfactant protein synthesis in fetal rabbits and improves lung stability after premature birth. J Clin Invest 1997; 99: 2992-2999
  • 34 Glumoff V, Vayrynen O, Kangas T et al. Degree of lung maturity determines the direction of the interleukin-1- induced effect on the expression of surfactant proteins. Am J Respir Cell Mol Biol 2000; 22: 280-288
  • 35 Jobe AH, Newnham JP, Willet KE et al. Effects of antenatal endotoxin and glucocorticoids on the lungs of preterm lambs. Am J Obstet Gynecol 2000; 182: 401-408
  • 36 Bachurski CJ, Ross GF, Ikegami M et al. Intra-amniotic endotoxin increases pulmonary surfactant proteins and induces SP-B processing in fetal sheep. Am J Physiol Lung Cell Mol Physiol 2001; 280: L279-L285
  • 37 Emerson GA, Bry K, Hallman M et al. Intra-amniotic interleukin-1 alpha treatment alters postnatal adaptation in premature lambs. Biol Neonate 1997; 72: 370-379
  • 38 Kallapur SG, Nitsos I, Moss TJ et al. IL-1 mediates pulmonary and systemic inflammatory responses to chorioamnionitis induced by lipopolysaccharide. Am J Respir Crit Care Med 2009; 179: 955-961
  • 39 Hogmalm A, Sheppard D, Lappalainen U et al. beta6 Integrin subunit deficiency alleviates lung injury in a mouse model of bronchopulmonary dysplasia. Am J Respir Cell Mol Biol 2010; 43: 88-98
  • 40 Kallapur SG, Moss TJ, Auten Jr RL et al. IL-8 signaling does not mediate intra-amniotic LPS-induced inflammation and maturation in preterm fetal lamb lung. Am J Physiol Lung Cell Mol Physiol 2009; 297: L512-L519
  • 41 Bry K, Whitsett JA, Lappalainen U. IL-1beta disrupts postnatal lung morphogenesis in the mouse. Am J Respir Cell Mol Biol 2007; 36: 32-42
  • 42 Lappalainen U, Whitsett JA, Wert SE et al. Interleukin-1beta causes pulmonary inflammation, emphysema, and airway remodeling in the adult murine lung. Am J Respir Cell Mol Biol 2005; 32: 311-318
  • 43 Kramer BW, Ladenburger A, Kunzmann S et al. Intravenous lipopolysaccharide-induced pulmonary maturation and structural changes in fetal sheep. Am J Obstet Gynecol 2009; 200 (195) e191-110
  • 44 Polglase GR, Dalton RG, Nitsos I et al. Pulmonary vascular and alveolar development in preterm lambs chronically colonized with Ureaplasma parvum. Am J Physiol Lung Cell Mol Physiol 2010; 299: L232-L241
  • 45 Sweet DG, Huggett MT, Warner JA et al. Maternal betamethasone and chorioamnionitis induce different collagenases during lung maturation in fetal sheep. Neonatology 2008; 94: 79-86
  • 46 Kuypers E, Collins JJ, Kramer BW et al. Intra-amniotic LPS and antenatal betamethasone: inflammation and maturation in preterm lamb lungs. Am J Physiol Lung Cell Mol Physiol 2012; 302: L380-389
  • 47 Ladenburger A, Seehase M, Kramer BW et al. Glucocorticoids potentiate IL-6-induced SP-B expression in H441 cells by enhancing the JAK-STAT signaling pathway. Am J Physiol Lung Cell Mol Physiol 2010; 299: L578-L584
  • 48 Morrisey EE, Hogan BL. Preparing for the first breath: genetic and cellular mechanisms in lung development. Developmental cell 2010; 18: 8-23
  • 49 Beers MF, Morrisey EE. The three R’s of lung health and disease: repair, remodeling, and regeneration. J Clin Invest 2011; 121: 2065-2073
  • 50 Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med 2001; 163: 1723-1729
  • 51 Speer CP. Chorioamnionitis, postnatal factors and proinflammatory response in the pathogenetic sequence of bronchopulmonary dysplasia. Neonatology 2009; 95: 353-361
  • 52 Kramer BW, Kramer S, Ikegami M et al. Injury, inflammation, and remodeling in fetal sheep lung after intra-amniotic endotoxin. Am J Physiol Lung Cell Mol Physiol 2002; 283: L452-L459
  • 53 Kramer BW, Kallapur S, Newnham J et al. Prenatal inflammation and lung development. Semin Fetal Neonatal Med 2009; 14: 2-7
  • 54 Willet KE, Jobe AH, Ikegami M et al. Antenatal endotoxin and glucocorticoid effects on lung morphometry in preterm lambs. Pediatr Res 2000; 48: 782-788
  • 55 Kallapur SG, Bachurski CJ, Le Cras TD et al. Vascular changes after intra-amniotic endotoxin in preterm lamb lungs. Am J Physiol Lung Cell Mol Physiol 2004; 287: L1178-L1185
  • 56 Kunzmann S, Speer CP, Jobe AH et al. Antenatal inflammation induced TGF-beta1 but suppressed CTGF in preterm lungs. Am J Physiol Lung Cell Mol Physiol 2007; 292: L223-L231
  • 57 Kunzmann S, Collins JJ, Yang Y et al. Antenatal inflammation reduces expression of caveolin-1 and influences multiple signaling pathways in preterm fetal lungs. Am J Respir Cell Mol Biol 2011; 45: 969-976
  • 58 Kramer BW, Ladenburger A, Kunzmann S et al. Intravenous lipopolysaccharide-induced pulmonary maturation and structural changes in fetal sheep. Am J Obstet Gynecol 2008; DOI:
  • 59 Collins JJ, Kallapur SG, Knox CL et al. Inflammation in fetal sheep from intra-amniotic injection of Ureaplasma parvum. Am J Physiol Lung Cell Mol Physiol 2010; 299: L852-L860
  • 60 Benjamin JT, Carver BJ, Plosa EJ et al. NF-kappaB activation limits airway branching through inhibition of Sp1-mediated fibroblast growth factor-10 expression. J Immunol 2010; 185: 4896-4903
  • 61 Perl AK, Gale E. FGF signaling is required for myofibroblast differentiation during alveolar regeneration. Am J Physiol Lung Cell Mol Physiol 2009; 297: L299-L308
  • 62 Weaver M, Dunn NR, Hogan BL. Bmp4 and Fgf10 play opposing roles during lung bud morphogenesis. Development 2000; 127: 2695-2704
  • 63 Thomas W, Seidenspinner S, Kramer BW et al. Airway concentrations of angiopoietin-1 and endostatin in ventilated extremely premature infants are decreased after funisitis and unbalanced with bronchopulmonary dysplasia/death. Pediatr Res 2009; 65: 468-473
  • 64 Thomas W, Seidenspinner S, Kramer BW et al. Airway angiopoietin-2 in ventilated very preterm infants: association with prenatal factors and neonatal outcome. Pediatr Pulmonol 2011; 46: 777-784
  • 65 Le Cras TD, Markham NE, Tuder RM et al. Treatment of newborn rats with a VEGF receptor inhibitor causes pulmonary hypertension and abnormal lung structure. Am J Physiol Lung Cell Mol Physiol 2002; 283: L555-L562
  • 66 Jakkula M, Le Cras TD, Gebb S et al. Inhibition of angiogenesis decreases alveolarization in the developing rat lung. Am J Physiol Lung Cell Mol Physiol 2000; 279: L600-L607
  • 67 Polglase GR, Hooper SB, Gill AW et al. Intrauterine inflammation causes pulmonary hypertension and cardiovascular sequelae in preterm lambs. J Appl Physiol 2010; 108: 1757-1765
  • 68 Heine UI, Munoz EF, Flanders KC et al. Colocalization of TGF-beta 1 and collagen I and III, fibronectin and glycosaminoglycans during lung branching morphogenesis. Development 1990; 109: 29-36
  • 69 Lebeche D, Malpel S, Cardoso WV. Fibroblast growth factor interactions in the developing lung. Mech Dev 1999; 86: 125-136
  • 70 Beer HD, Florence C, Dammeier J et al. Mouse fibroblast growth factor 10: cDNA cloning, protein characterization, and regulation of mRNA expression. Oncogene 1997; 15: 2211-2218
  • 71 Chen S, Rong M, Platteau A et al. CTGF disrupts alveolarization and induces pulmonary hypertension in neonatal mice: implication in the pathogenesis of severe bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2011; 300: L330-L340
  • 72 Alapati D, Rong M, Chen S et al. Connective tissue growth factor antibody therapy attenuates hyperoxia-induced lung injury in neonatal rats. Am J Respir Cell Mol Biol 2011; 45: 1169-1177
  • 73 Wu S, Platteau A, Chen S et al. Conditional overexpression of connective tissue growth factor disrupts postnatal lung development. Am J Respir Cell Mol Biol 2010; 42: 552-563
  • 74 Vicencio AG, Lee CG, Cho SJ et al. Conditional overexpression of bioactive TGF-{beta}1 in neonatal mouse lung: A new model for BPD?. Am J Respir Cell Mol Biol 2004; DOI:
  • 75 Gauldie J, Galt T, Bonniaud P et al. Transfer of the active form of transforming growth factor-beta 1 gene to newborn rat lung induces changes consistent with bronchopulmonary dysplasia. Am J Pathol 2003; 163: 2575-2584
  • 76 Nakanishi H, Sugiura T, Streisand JB et al. TGF-beta-neutralizing antibodies improve pulmonary alveologenesis and vasculogenesis in the injured newborn lung. Am J Physiol Lung Cell Mol Physiol 2007; 293: L151-L161
  • 77 Chen H, Sun J, Buckley S et al. Abnormal mouse lung alveolarization caused by Smad3 deficiency is a developmental antecedent of centrilobular emphysema. Am J Physiol Lung Cell Mol Physiol 2005; 288: L683-L691
  • 78 Chen H, Zhuang F, Liu YH et al. TGF-beta receptor II in epithelia versus mesenchyme plays distinct roles in the developing lung. Eur Respir J 2008; 32: 285-295
  • 79 Baguma-Nibasheka M, Kablar B. Pulmonary hypoplasia in the connective tissue growth factor (Ctgf) null mouse. Dev Dyn 2008; 237: 485-493
  • 80 Konigshoff M, Eickelberg O. WNT signaling in lung disease: a failure or a regeneration signal?. Am J Respir Cell Mol Biol 2010; 42: 21-31
  • 81 Bellusci S, Furuta Y, Rush MG et al. Involvement of Sonic hedgehog (Shh) in mouse embryonic lung growth and morphogenesis. Development 1997; 124: 53-63
  • 82 Shenai JP, Chytil F, Stahlman MT. Vitamin A status of neonates with bronchopulmonary dysplasia. Pediatr Res 1985; 19: 185-188
  • 83 Kramer BW, Albertine KH, Moss TJ et al. All-trans retinoic acid and intra-amniotic endotoxin-mediated effects on fetal sheep lung. Anat Rec (Hoboken) 2008; 291: 1271-1277
  • 84 Akhmetshina A, Palumbo K, Dees C et al. Activation of canonical Wnt signalling is required for TGF-beta-mediated fibrosis. Nature communications 2012; 3: 735
  • 85 Li M, Li C, Liu YH et al. Mesodermal deletion of transforming growth factor-beta receptor II disrupts lung epithelial morphogenesis: cross-talk between TGF-beta and Sonic hedgehog pathways. J Biol Chem 2008; 283: 36257-36264
  • 86 Li C, Hu L, Xiao J et al. Wnt5a regulates Shh and Fgf10 signaling during lung development. Dev Biol 2005; 287: 86-97
  • 87 Minoo P, Li C. Cross-talk between transforming growth factor-beta and Wingless/Int pathways in lung development and disease. Int J Biochem Cell Biol 2010; 42: 809-812
  • 88 Razani B, Zhang XL, Bitzer M et al. Caveolin-1 regulates transforming growth factor (TGF)-beta/SMAD signaling through an interaction with the TGF-beta type I receptor. J Biol Chem 2001; 276: 6727-6738
  • 89 Kramer BW, Joshi SN, Moss TJ et al. Endotoxin-induced maturation of monocytes in preterm fetal sheep lung. Am J Physiol Lung Cell Mol Physiol 2007; 293: L345-L353
  • 90 Kramer BW, Jobe AH, Ikegami M. Monocyte function in preterm, term, and adult sheep. Pediatr Res 2003; 54: 52-57
  • 91 Kramer BW, Ikegami M, Moss TJ et al. Endotoxin-induced chorioamnionitis modulates innate immunity of monocytes in preterm sheep. Am J Respir Crit Care Med 2005; 171: 73-77
  • 92 Kallapur SG, Jobe AH, Ball MK et al. Pulmonary and systemic endotoxin tolerance in preterm fetal sheep exposed to chorioamnionitis. J Immunol 2007; 179: 8491-8499
  • 93 Kramer BW, Kallapur SG, Moss TJ et al. Modulation of fetal inflammatory response on exposure to lipopolysaccharide by chorioamnion, lung, or gut in sheep. Am J Obstet Gynecol 2010; 202 (77) e71-e79
  • 94 Kallapur SG, Kramer BW, Knox CL et al. Chronic fetal exposure to Ureaplasma parvum suppresses innate immune responses in sheep. J Immunol 2011; 187: 2688-2695
  • 95 Wolfs TG, Jellema RK, Turrisi G et al. Inflammation-induced immune suppression of the fetus: a potential link between chorioamnionitis and postnatal early onset sepsis. J Matern Fetal Neonatal Med 2012; 25 (Suppl. 01) 8-11
  • 96 Azizia M, Lloyd J, Allen M et al. Immune status in very preterm neonates. Pediatrics 2012; 129: e967-e974
  • 97 Greig PC, Herbert WN, Robinette BL et al. Amniotic fluid interleukin-10 concentrations increase through pregnancy and are elevated in patients with preterm labor associated with intrauterine infection. Am J Obstet Gynecol 1995; 173: 1223-1227
  • 98 Wirbelauer J, Seidenspinner S, Thomas W et al. Funisitis is associated with increased interleukin-10 gene expression in cord blood mononuclear cells in preterm infants </=32 weeks of gestation. Eur J Obstet Gynecol Reprod Biol 2011; 155: 31-35
  • 99 Kramer BW, Kallapur SG, Moss TJ et al. Intra-amniotic LPS modulation of TLR signaling in lung and blood monocytes of fetal sheep. Innate Immun 2009; 15: 101-107
  • 100 Hillman NH, Moss TJ, Nitsos I et al. Toll-like receptors and agonist responses in the developing fetal sheep lung. Pediatr Res 2008; 63: 388-393
  • 101 Kramer BW, Jobe AH. The clever fetus: responding to inflammation to minimize lung injury. Biol Neonate 2005; 88: 202-207
  • 102 Kallapur SG, Nitsos I, Moss TJ et al. Chronic endotoxin exposure does not cause sustained structural abnormalities in the fetal sheep lungs. Am J Physiol Lung Cell Mol Physiol 2005; 288: L966-L974
  • 103 Strunk T, Doherty D, Jacques A et al. Histologic chorioamnionitis is associated with reduced risk of late-onset sepsis in preterm infants. Pediatrics 2012; 129: e134-e141
  • 104 De Felice C, Latini G, Del Vecchio A et al. Small thymus at birth: a predictive radiographic sign of bronchopulmonary dysplasia. Pediatrics 2002; 110: 386-388
  • 105 De Felice C, Toti P, Santopietro R et al. Small thymus in very low birth weight infants born to mothers with subclinical chorioamnionitis. J Pediatr 1999; 135: 384-386
  • 106 Yinon Y, Zalel Y, Weisz B et al. Fetal thymus size as a predictor of chorioamnionitis in women with preterm premature rupture of membranes. Ultrasound Obstet Gynecol 2007; 29: 639-643
  • 107 Jeppesen DL, Hasselbalch H, Nielsen SD et al. Thymic size in preterm neonates: a sonographic study. Acta Paediatr 2003; 92: 817-822
  • 108 Toti P, De Felice C, Stumpo M et al. Acute thymic involution in fetuses and neonates with chorioamnionitis. Hum Pathol 2000; 31: 1121-1128
  • 109 Rosen D, Lee JH, Cuttitta F et al. Accelerated thymic maturation and autoreactive T cells in bronchopulmonary dysplasia. Am J Respir Crit Care Med 2006; 174: 75-83
  • 110 Kunzmann S, Glogger K, Been JV et al. Thymic changes after chorioamnionitis induced by intraamniotic lipopolysaccharide in fetal sheep. Am J Obstet Gynecol 2010; 202 (476) e471-e479
  • 111 Jobe AH, Ikegami M. Antenatal infection/inflammation and postnatal lung maturation and injury. Respir Res 2001; 2: 27-32