Transfusionsmedizin 2012; 2(4): 192-196
DOI: 10.1055/s-0032-1324868
Praxistipp
Georg Thieme Verlag KG Stuttgart · New York

Management „falsch positiver“ xMAP-Antikörperbefunde bei der Bestimmung von HLA-Antikörpern

Management of „false positive“ HLA-Antibody Results Detected by the Luminex® Technique
C. Schönemann
1   Zentrum für Transfusionsmedizin und Zelltherapie Berlin gGmbH und Universitätsmedizin Berlin, Charité Centrum 14
› Author Affiliations
Further Information

Publication History

Publication Date:
21 November 2012 (online)

Zusammenfassung

Die Befundung von Luminex®-Tests erfordert neben der Erfahrung in der HLA-Antikörper- (HLA-Ak-)Diagnostik auch die Berücksichtigung technischer Besonderheiten der Luminex®-Technologie. Das betrifft zum einen die Erkennung „falsch positiver“ Reaktionen, die bedingt sein können durch 1) allelspezifische HLA-Ak, 2) HLA-Ak gegen die α- und/oder β-Ketten der HLA-Klasse-II-Moleküle, 3) natürliche kreuzreagierende Antikörper aus Immunisierungen mit Mikroorganismen oder 4) die Denaturierung der HLA-Antigene auf den Luminex®-Beads. Zum anderen betrifft es die Erkennung „falsch negativer“ Reaktionen. Ursachen dafür können 1) Hemmungen der Antigen-/Antikörperbindung in hochtitrigen Seren (Prozonenphänomen), 2) Blockierungen durch HLA-IgM-Ak oder 3) durch Komplementkomponenten sein. Es sind zudem technisch bedingte Unterschiede durch die Auswahl und Dichte der HLA-Moleküle auf den Beads zwischen den verfügbaren Testformaten zu bedenken. Dieses Phänomen kann auch zwischen Beads mit unterschiedlicher HLA-Spezifität innerhalb desselben Testformats beobachtet werden. In jedem Falle müssen zur Plausibilitätsprüfung alle Informationen über Immunisierungsereignisse beim Patienten sowie die Ergebnisse aus einer Stufendiagnostik mehrerer Tests (LCT und Festphasentests) und Testformate (Luminex-Screening, -PRA und -Single Antigen) berücksichtigt werden.

Abstract

The interpretation of Luminex® tests requires comprehensive experience in HLA-antibody diagnostics. Additionally, the consideration of special technical characteristics of this technology is a prerequisite for reporting correct specificities. On the one hand, “false positive” results have to be excluded. These reactions are caused by 1) the reaction of allel specific HLA-antibodies, 2) reactions to the α- and/or β-chains of the HLA molecule, 3) the occurrence of natural antibodies, caused by cross reactivity with bacterial or viral microorganisms or 4) conformational changes of the HLA-antigens fixed on the beadsʼ surface. On the other hand, “false negative” results have to be excluded which might be caused by 1) sera with high antibody titer, 2) blocking by HLA-IgM antibodies or 3) by the complement component C1. Moreover, the differences in the sensitivity of the available test formats with different antigen densities on the beadsʼ surface need to be considered. This phenomenon could also be observed between beads with different specificities within the same test format. In any case, the history of immunizing events of the patient and the history of all performed tests and test formats have to be considered for the final result.

 
  • Literatur

  • 1 Terasaki PI, McClelland JD. Microdroplet assay of human serum cytotoxins. Nature 1964; 204: 998-1000
  • 2 Patel R, Terasaki PI. Significance of the positive crossmatch test in kidney transplantation. N Engl J Med 1969; 280: 735-739
  • 3 Amos DB. Cell separation. In: Ray JG, ed. National Institute of Allergy and Infectious Disease Manual of Tissue Typing Techniques. Rockville, MD: Dept. of Health, Education, and Welfare; 1979. (publication number NIH 80-545) 25
  • 4 Zachary AA, Klingman L, Torne N et al. Variations of the lymphocytotoxicity test. An evaluation of sensitivity and specificity. Transplantation 1995; 60: 498
  • 5 Kerman RH, Susskind B, Buelow R et al. Correlation of ELISA-detected IgG and IgA anti-HLA antibodies in pre-transplant sera with renal allograft rejection. Transplantation 1996; 62: 201
  • 6 Schoenemann C, Groth J, Leverenz S et al. HLA class I and class II antibodies: monitoring before and after kidney transplantation and their clinical relevance. Transplantation 1998; 65: 1519
  • 7 Cai J, Terasaki PI, Anderson N et al. Intact HLA not β-2-m free heavy chain specific HLA class 1 antibodies are predictors of graft failure. Transplantation 2009; 88: 226
  • 8 Gupta A, Sinnott P. Clinical relevance of pre-transplant human leukocyte antigen donor-specific antibodies in renal patients waiting for a transplant: a risk factor. Hum Immunol 2009; 70: 618
  • 9 Amico P, Hönger G, Mayr M et al. Clinical relevance of pre-transplant donor-specific HLA antibodies detected by single-antigen flow-beads. Transplantation 2009; 87: 1681
  • 10 Riethmüller S, Ferrari-Lacraz S, Muller MK et al. Donor-specific antibody levels and three generations of crossmatches to predict antibody-mediated rejection in kidney transplantation. Transplantation 2010; 90: 160
  • 11 Singh N, Djamali A, Lorentzen D et al. Pre-transplant donor-specific antibodies detected by single-antigen bead flow cytometry are associated with inferior kidney transplant outcomes. Transplantation 2010; 90: 1079
  • 12 Gloor JM, Winters JL, Cornell LD et al. Baseline donor-specific antibody levels and outcomes in positive crossmatch kidney transplantation. Am J Transplant 2010; 10: 582
  • 13 Van Den Berg-Loonen E, Billen EVA, Voorter CEM et al. Clinical relevance of pre-transplant donor-directed antibodies detected by single antigen beads in highly sensitized renal transplant patients. Transplantation 2008; 85: 1086
  • 14 Süsal C, Ovens J, Mahmoud K et al. No association of kidney graft loss with human leukocyte antigen antibodies detected exclusively by sensitive luminex single-antigen testing: A Collaborative Transplant Study Report. Transplantation 2011; 91: 881
  • 15 Alberú J, Morales-Buenrostro LE, De Leo C et al. A non-allogeneic stimulus triggers the production of de novo HLA antibodies in healthy adults. Transpl Immunol 2007; 18: 166-171
  • 16 Morales-Buenrostro LE, Terasaki PI, Marino-Vazquez LA et al. “Natural” human leukocyte antigen antibodies found in non-alloimmunized health males. Transplantation 2008; 86: 1111
  • 17 El-Awar N, Terasaki PI, Nguyen A et al. Epitopes of human leukocyte antigen class I antibodies found in sera of normal healthy males and cord blood. Hum Immunol 2009; 70: 844-853
  • 18 Paqueralt S, Hardy PT, Wersto N et al. Investigation of optimal use of computer-aided detection systems: the role of the “machine” in decision making process. Acad Radiol 2010; 17: 1112-1121
  • 19 Tambur AR, Leventhal JR, Friedwald JJ et al. The complexity of human leukocyte (HLA)-DQ antibodies and its effect on virtual crossmatching. Transplantation 2010; 90: 1117
  • 20 Pereira S, Perkins S, Lee J-H et al. Donor-specific antibody against denatured HLA-A1: clinically nonsignificant?. Hum Immunol 2011; 72: 492
  • 21 Poli F, Benazzi E, Innocente A et al. Heart transplantation with donor-specific antibodies directed toward denatured HLA-A*02:01: a case report. Hum Immunol 2011; 72: 1045
  • 22 Zachary AA, Sholander JT, Houp JA et al. Using real data for a virtual crossmatch. Hum Immunol 2009; 70: 574
  • 23 Kosmoliaptsis V, Bradley JA, Peacock S et al. Detection of immunoglobulin G human leukocyte antigen-specific alloantibodies in renal transplant patients using single-antigen-beads is compromised by the presence of immunoglobulin M human leukocyte antigen-specific alloantibodies. Transplantation 2009; 87: 813
  • 24 Schnaidt M, Weinstock C, Jurisic M et al. HLA antibody specification using single-antigen beads–a technical solution for the prozone effect. Transplantation 2011; 92: 510-515
  • 25 Vignali DAA. Multiplexed particle-based flow cytometric assays. J Imm Methods 2000; 243: 243