Der Nuklearmediziner 2012; 35(04): 246-250
DOI: 10.1055/s-0032-1327722
Strahlenexposition bei Hybridbildgebung
© Georg Thieme Verlag KG Stuttgart · New York

Optimierung des CT-Dosismanagements bei der nuklearmedizinischen Hybridbildgebung durch Nutzung einer iterativen Rekonstruktion für die low-dose-CT

Optimization of the CT Dose Management in Nuclear Medicine Hybrid Imaging by Iterative Reconstruction for Low-dose CT
O. S. Großer
1   Klinik für Radiologie und Nuklearmedizin, Universitätsklinikum Magdeburg A.ö.R, Magdeburg
,
D. Czuczwara
1   Klinik für Radiologie und Nuklearmedizin, Universitätsklinikum Magdeburg A.ö.R, Magdeburg
,
H. Amthauer
1   Klinik für Radiologie und Nuklearmedizin, Universitätsklinikum Magdeburg A.ö.R, Magdeburg
› Author Affiliations
Further Information

Publication History

Publication Date:
12 December 2012 (online)

Zusammenfassung

Die zivilisatorische Strahlenexposition wird in den entwickelten Ländern von der medizinischen Strahlenanwendung dominiert. Ein Anwendungsbereich für den medizinischen Einsatz ionisierender Strahlung stellt dabei die Hybridbildgebung in der Kombination eines nuklearmedizinischen Schnittbildverfahrens wie der Single-Photonen-Emissions-Tomografie (SPECT) oder der Positronen-Emissions-Tomografie (PET) mit der Computertomografie (CT) dar. Durch das Hybriddesign akkumulieren die Verfahren die Expositionen aus unterschiedlichen Strahlungsarten. Die einzelnen bildgebenden Modalitäten sind Gegenstand langjähriger Optimierungen. Abweichend von der diagnostischen Anwendung kann die CT in der Hybridbildgebung, aber auch in einer low-dose-Variante zur ausschließlichen Schwächungskorrektur und zur Lokalisationsdiagnostik durchgeführt werden. Durch die Nutzung moderner Spiral-CTs in den Hybridsystemen und die hier stattfindende Entwicklung iterativer Rekonstruktionsalgorithmen für die CT-Rekonstruktion stehen neue Methoden zur Verfügung, die unter Optimierungsaspekten für die low-dose-CT zu betrachten sind. Im Vergleich dazu etabliert sich die iterative Bildrekonstruktion in der diagnostischen Computertomografie mit Erfolg und es kann in Abhängigkeit vom Untersuchungsprotokoll eine Verminderung der CT-Exposition in der Größenordnung um bis zu 50% bei gleichbleibender Bildqualität realisiert werden.

Abstract

Artificial radiation exposure in industrial countries is dominated by the use of ionizing radiation in medicine. Hybrid imaging represents a special application in medicine, combining nuclear medicine tomography like singlephoton emission tomography (SPECT) or positron emission tomography (PET) with X-ray computed tomography (CT). Due to the hybrid design the method accumulates the exposure from different types of radiation. Both modalities have been the subject of long-time optimization efforts, with focus consistently on diagnostic applications. As distinct from the latter, CT can also be employed for low-dose imaging. The use of advanced multislice-CTs in hybrid systems as well as the development of iterative reconstruction algorithms for CT reconstruction provide new methods which need to be considered for low-dose CT from an optimization perspective. By comparison, iterative image reconstruction is well-established in diagnostic computed tomography. Depending on the examination protocol, a reduction in CT exposure in the order of 50% can be achieved, with constant image quality ensured.

 
  • Literatur

  • 1 Weber WA. Use of PET for monitoring cancer therapy and for predicting outcome. J Nucl Med 2005; 46: 983-995
  • 2 Weber WA. Assessing tumor response to therapy. J Nucl Med 2009; 50: 1S-10S
  • 3 Beyer T, Townsend DW, Brun T et al. A combined PET/CT scanner for clinical oncology. J Nucl Med 2000; 41: 1369-1379
  • 4 Wahl RL, Quint LE, Cieslak RD et al. Anatometabolic tumor imaging: fusion of FDG PET with CT or MRI to localize foci of increased activity. J Nucl Med 1993; 34: 1190-1197
  • 5 Kinahan PE, Townsend DW, Beyer T et al. Attenuation correction for a combined 3D PET/CT scanner. Med Phys 1998; 25: 2046-2053
  • 6 Hall EJ, Brenner DJ. Cancer risks from diagnostic radiology. Br J Radiol 2008; 81: 362-378
  • 7 Martinsen AC, Saether HK, Hol PK et al. Iterative reconstruction reduces abdominal CT dose. Eur J Radiol 2012; 81: 1483-1487
  • 8 Larkin AM, Serulle Y, Wagner S et al. Quantifying the increase in radiation exposure associated with SPECT/CT compared to SPECT alone for routine nuclear medicine examinations. Int J Mol Imaging 2011; Epub 2011;
  • 9 Brix G, Lechel U, Glatting G et al. Radiation exposure of patients undergoing whole-body dual-modality 18F-FDG PET/CT examinations. J Nucl Med 2005; 46: 608-613
  • 10 NCRP National council on radiation protection and measurements (USA) . Ionizing radiation exposure of the population of the United States. Report No. 160. NCRP 2009;
  • 11 Silva AC, Lawder HJ, Hara A et al. Innovations in CT dose reduction strategy: application of the adaptive statistical iterative reconstruction algorithm. Am J Roentgenol 2010; 194: 191-199
  • 12 Hara AK, Paden RG, Silva AC et al. Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. Am J Roentgenol 2009; 193: 764-771
  • 13 Prakash P, Kalra MK, Digumarthy SR et al. Radiation dose reduction with chest computed tomography using adaptive statistical iterative reconstruction technique: initial experience. J Comput Assist Tomogr 2010; 34: 40-45
  • 14 Prakash P, Kalra MK, Kambadakone AK et al. Reducing abdominal CT radiation dose with adaptive statistical iterative reconstruction technique. Invest Radiol 2010; 45: 202-210
  • 15 Cornfeld D, Israel G, Detroy E et al. Impact of Adaptive Statistical Iterative Reconstruction (ASIR) on radiation dose and image quality in aortic dissection studies: a qualitative and quantitative analysis. Am J Roentgenol 2011; 196: 336-340
  • 16 Xia T, Alessio AM, De Man B et al. Ultra-low dose CT attenuation correction for PET/CT. Physics in Medicine and Biology 2012; 57: 309-328
  • 17 O’Connor MK, Kemp BJ. Single-photon emission computed tomography/computed tomography: basic instrumentation and innovations. Semin Nucl Med 2006; 36: 258-266
  • 18 Römer W. SPECT/CT – Technische Aspekte und Optimierungsmöglichkeiten. Radiologe 2012; 52: 608-614
  • 19 McNitt-Gray MF. AAPM/RSNA Physics Tutorial for Residents: Topics in CT. Radiation dose in CT. Radiographics 2002; 22: 1541-1553
  • 20 Kalra MK, Maher MM, Toth TL et al. Strategies for CT radiation dose optimization. Radiology 2004; 230: 619-628
  • 21 Xia T, Alessio A, Kinahan PE. Limits of ultra-low dose CT attenuation correction for PET/CT. IEEE NSS/MIC 2009; 3074-3079
  • 22 Colsher JG, Jiang H, Thibault JB et al. Ultra low dose CT for attenuation correction in PET/CT. IEEE NSS/MIC 2008;
  • 23 Grosser OS, Czuczwara D, Steffen IG et al. Reduzierung der Dosis in der Low-Dose-CT durch Nutzung einer iterativen CT-Rekonstruktion. Nuklearmedizin 2012; 51: A37
  • 24 Stamm G, Nagel HD. CT-expo – a novel program for dose evaluation in CT. Röfo 2002; 174: 1570-1576
  • 25 ICRP Recommendations of the International Commission on Radiological Protection . ICRP Publication 103. Ann ICRP 2007; 37: 1-332
  • 26 ICRP Radiation dose to patients from radiopharmaceuticals . Addendum 3 to ICRP Publication 53. ICRP Publication 106. Ann ICRP 2008; vol. 38: 1-197
  • 27 Singh S, Kalra MK, Do S et al. Comparison of hybrid and pure iterative reconstruction techniques with conventional filtered back projection: dose reduction potential in the abdomen. J Comput Assist Tomogr 2012; 36: 347-353