Informationen aus Orthodontie & Kieferorthopädie 2012; 44(04): 247-251
DOI: 10.1055/s-0032-1331167
Übersichtsartikel
© Georg Thieme Verlag KG Stuttgart · New York

Atemstörungen und kraniofaziales Wachstum – Konsequenzen und Behandlungsoptionen

Impaired Breathing and Craniofacial Growth – Consequences and Treatment Options
T. Peltomäki
1   Oral and Maxillofacial Unit, Tampere University Hospital and Department of Otolaryngology, University of Tampere, ­Tampere, Finland
,
J. Kurimo
1   Oral and Maxillofacial Unit, Tampere University Hospital and Department of Otolaryngology, University of Tampere, ­Tampere, Finland
,
R. Jaanimets
1   Oral and Maxillofacial Unit, Tampere University Hospital and Department of Otolaryngology, University of Tampere, ­Tampere, Finland
2   Medical Imaging Center, Tampere University Hospital, Tampere, Finland
,
J. Järnstedt
2   Medical Imaging Center, Tampere University Hospital, Tampere, Finland
,
A. Miettinen
1   Oral and Maxillofacial Unit, Tampere University Hospital and Department of Otolaryngology, University of Tampere, ­Tampere, Finland
› Author Affiliations
Further Information

Publication History

Publication Date:
09 January 2013 (online)

Zusammenfassung

Über den Einfluss der Atmung auf das kraniofaziale Wachstum und die okklusale Entwicklung wird in der Kieferorthopädie schon seit Jahrzehnten diskutiert. Man geht zwar davon aus, dass eine Beziehung zwischen Form, also den kraniofazialen Strukturen, und Funktion, der Atmung, besteht. Die Art dieser Beziehung ist allerdings noch weitgehend ungeklärt. Beeinflusst die Morphologie kraniofazialer Strukturen (Lage des Unterkiefers, Breite des Oberkiefers) die Atmung, oder hat etwa die Art der Atmung (Nasen- oder Mundatmung, behindert oder nicht behindert, besonders während des Schlafes) Auswirkungen auf die kraniofaziale und okklusale Entwicklung.

Während der vergangenen 3 Jahrzehnte haben sich Forschung und klinisches Interesse an der Atmung den nächtlichen Atemregulationsstörungen zugewandt. Das Spektrum dieser Atemstörungen reicht von chronischem oder habituellem Schnarchen bis hin zum Widerstandssyndrom der oberen Atemwege und zur obstruktiven Schlafapnoe.

Bei Kindern gelten große Rachenmandeln und Tonsillen als Hauptursachen für nächtliche Atemregulationsstörungen, wobei Schnarchen oder Atemgeräusche während des Schlafes die häufigsten Symptome darstellen. Eine Adenotomie ist bei 2/3 der pädiatrischen Patienten mit nächtlichen Atemregulationsstörungen die Therapie der Wahl. Personen mit persistierender Symptomatik sind übergewichtig, haben schwere nächtliche Atemregulationsstörungen und/oder haben, als Folge von Anpassungsvorgängen, ungünstige dentale und kraniofaziale Verhältnisse. In solchen Fällen ist das Fachwissen der Kieferorthopädie gefragt, mit deren Hilfe ein Oberkiefer geweitet und ein Unterkiefer nachentwickelt werden kann.

Risikofaktoren in Verbindung mit obstruktiver Schlafapnoe bei Erwachsenen, wie z. B. solche Faktoren, die die Größe der Atemwege speziell hinter der Zunge beeinflussen, im Zusammenhang mit einer physiologischen Verminderung des Muskeltonus im Schlaf, führen zur obstruktiven Atmung. Bei übergewichtigen und fettleibigen Patienten stellt vergrößertes Fettgewebe in den parapharyngealen Bereichen für sich alleine schon eine wichtige Ursache für die Erkrankung dar. Bei normalgewichtigen Personen spielt demgegenüber eine abweichende Anatomie der oberen Atemwege und der Hart- bzw. Weichgewebe beim Entstehen einer obstruktiven Schlafapnoe eine Rolle. Als effektivste chirurgische Therapie bei der obstruktiven Schlafapnoe Erwachsener hat sich die chirurgische Vorverlagerung von Ober- und Unterkiefer erwiesen, obwohl hier noch Untersuchungen zur Langzeitstabilität der Ergebnisse erforderlich sind.

Abstract

The impact of mode of breathing on craniofacial growth and occlusal development has been a widely debated issue in orthodontics for decades. Form-function relationship between craniofacial structure and breathing function has been acknowledged, but understanding of this association is poorly understood. Does craniofacial morphology (mandibular position, width of maxilla) have an impact on breathing, or does breathing (nose vs. mouth, disturbed or undisturbed particularly during sleep) affect craniofacial and occlusal development.

During the past 3 decades research and clinical interest on breathing function has focused to sleep disordered breathing (SDB). This continuum spectrum of breathing anomalies ranges from chronic or habitual snoring to upper airway resistance syndrome (UARS) and to obstructive sleep apnea (OSA).

In children large adenoids and tonsils are considered as the main causes of SDB with snoring or noise breathing at sleep being the most frequent symptoms. Adenotonsillectomy is effective first-line therapy for 2/3 of pediatric SDB patients. Individuals with persisting symptoms are obese, have severe SDB and/or have already due to adaptation an unfavourable dental and craniofacial structure, which calls for orthodontic expertise to widen maxilla and/or advance mandible.

Risk factors related to OSA in adults include factors which reduce upper airway size, particularly behind the tongue, and concomitantly with physiological reduction of muscular tonus at sleep, lead to obstructed breathing. In overweight and obese subjects increased adipose tissue in the parapharyngeal areas is alone a significant causative factor for the disease, but in normal weight individuals abnormal upper airway anatomy of soft and/or hard tissues plays a role in the development of OSA. Maxillomandibular surgical advancement has been found to be the most effective surgical therapy in adult OSA, however, studies of long term stability are still needed.

 
  • Literatur

  • 1 Linder-Aronson S. Adenoids. Their effect on mode of breathing and nasal airflow and their relationship to characteristics of the facial skeleton and the dentition. A biometric, rhino-manometric and cephalometro-radiographic study on children with and without adenoids. Acta Otolaryngologica Suppl 1970; 265: 1-132
  • 2 Koski K, Lähdemäki P. Adaptation of the mandible in children with adenoids. Am J Orthod 1975; 68 (06) 660-665
  • 3 McNamara JA. Influence of respiratory pattern on craniofacial growth. Angle Orthod 1981; 51 (04) 269-300
  • 4 Solow B, Siersbaek-Nielsen S, Greve E. Airway adequacy, head posture, and craniofacial morphology. Am J Orthod 1984; 86 (03) 214-223
  • 5 Warren DW, Spalding PM. Dentofacial morphology and breathing: a century of controversy. In: Melsen B. (ed.). Current Controversies in Orthodontics. Quintessence Publ.; Chigago: 1991: 45-76
  • 6 Vig KW. Nasal obstruction and facial growth: the strength of evidence for clinical assumptions. Am J Orthod Dentofacial Orthop 1998; 113 (06) 603-611
  • 7 Spicer S. Nasal obstruction and mouth-breathing as factors in the etiology of disorders of the teeth. Science 1890; NS 15 (368) 124
  • 8 Moss ML. The functional matrix. In: Kraus BS, Riedel RA. (eds.). Vistas in Orthodontics. Lea and Febiger; Philadelphia: 1962: 85-98
  • 9 Harvold EP, Tomer BS, Vargervik K et al. Primate experiments on oral respiration. Am J Orthod 1981; 79 (04) 359-372
  • 10 Solow B, Kreiborg S. Soft-tissue stretching: a possible control factor in craniofacial morphogenesis. Scand J Dent Res 1977; 85 (06) 505-507
  • 11 Peltomäki T. The effect of mode of breathing on craniofacial growth – revisited. Eur J Orthod 2007; 29 (05) 426-429
  • 12 Löfstrand-Tideström B, Thilander B, Ahlqvist-Rastad J et al. Breathing obstruction in relation to craniofacial and dental arch morphology in 4-year-old children. Eur J Orthod 1999; 21 (04) 323-332
  • 13 Finkelstein Y, Wexler D, Berger G et al. Anatomical basis of sleep-related breathing abnormalities in children with nasal obstruction. Arch Otolaryngol Head Neck Surg 2000; 126 (05) 593-600
  • 14 Kawashima S, Peltomäki T, Sakata H et al. Craniofacial morphology in preschool children with sleep-related breathing disorder and hypertrophy of tonsils. Acta Paediatr 2002; 91 (01) 71-77
  • 15 Kawashima S, Peltomäki T, Sakata H et al. Absence of facial type differences among preschool children with sleep-related breathing disorder. Acta Odontol Scand 2003; 61 (02) 65-71
  • 16 Pirilä-Parkkinen K, Pirttiniemi P, Nieminen P et al. Dental arch morphology in children with sleep-disordered breathing. Eur J Orthod 2009; 31 (02) 160-167
  • 17 Pirilä-Parkkinen K, Löppönen H, Nieminen P et al. Cephalometric evaluation of children with nocturnal sleep-disordered breathing. Eur J Orthod 2010; 32 (06) 662-671
  • 18 Nieminen P, Tolonen U, Löppönen H et al. Snoring children: factors predicting sleep apnea. Acta Otolaryngol Suppl 1997; 529: 190-194
  • 19 Contencin P, Guilleminault C, Manach Y. Long-term follow-up and mechanisms of obstructive sleep apnea (OSA) and related syndromes through infancy and childhood. Int J Pediatr Otorhinolaryngol 2003; 67 (Suppl. 01) S119-S123
  • 20 Guilleminault C, Li K, Quo S et al. A prospective study on the surgical outcomes of children with sleep-disordered breathing. Sleep 2004; 27 (01) 95-100
  • 21 Marcus CL. Pathophysiology of childhood obstructive sleep apnea: current concepts. Respir Physiol 2000; 119 (2–3) 143-154
  • 22 Liukkonen K, Virkkula P, Haavisto A et al. Symptoms at presentation in children with sleep-related disorders. Int J Pediatr Otorhinolaryngol 2012; 76 (03) 327-333
  • 23 Friedman M, Wilson M, Lin HC et al. Updated systematic review of tonsillectomy and adenoidectomy for treatment of pediatric obstructive sleep apnea/hypopnea syndrome. Otolaryngol Head Neck Surg 2009; 140 (06) 800-808
  • 24 O’Brien LM, Sitha S, Baur LA et al. Obesity increases the risk for persisting obstructive sleep apnea after treatment in children. Int J Pediatr Otorhinolaryngol 2006; 70 (09) 1555-1560
  • 25 Zettergren-Wijk L, Forsberg CM, Linder-Aronson S. Changes in dentofacial morphology after adeno-/tonsillectomy in young children with obstructive sleep apnoea – a 5-year follow-up study. Eur J Orthod 2006; 28 (04) 319-326
  • 26 Ruoff CM, Guilleminault C. Orthodontics and sleep-disordered breathing. Sleep Breath 2012; 16 (02) 271-273
  • 27 Pirelli P, Saponara M, Guilleminault C. Rapid maxillary expansion in children with obstructive sleep apnea syndrome. Sleep 2004; 27 (04) 761-766
  • 28 Villa MP, Malagola C, Pagani J et al. Rapid maxillary expansion in children with obstructive sleep apnea syndrome: 12-month follow-up. Sleep Med 2007; 8 (02) 128-134
  • 29 Villa MP, Rizzoli A, Miano S et al. Efficacy of rapid maxillary expansion in children with obstructive sleep apnea syndrome: 36 months of follow-up. Sleep Breath 2011; 15 (02) 179-184
  • 30 Guilleminault C, Monteyrol PJ, Huynh NT et al. Adeno-tonsillectomy and rapid maxillary distraction in pre-pubertal children, a pilot study. Sleep Breath 2011; 15 (02) 173-177
  • 31 Baratieri C, Alves Jr M, de Souza MM et al. Does rapid maxillary expansion have long-term effects on airway dimensions and breathing?. Am J Orthod Dentofacial Orthop 2011; 140 (02) 146-156
  • 32 Hänggi MP, Teuscher UM, Roos M et al. Long-term changes in pharyngeal airway dimensions following activator-headgear and fixed appliance treatment. Eur J Orthod 2008; 30 (06) 598-605
  • 33 Villa MP, Bernkopf E, Pagani J et al. Randomized controlled study of an oral jaw-positioning appliance for the treatment of obstructive sleep apnea in children with malocclusion. Am J Respir Crit Care Med 2002; 165 (01) 123-127
  • 34 Carvalho FR, Lentini-Oliveira D, Machado MA et al. Oral appliances and functional orthopaedic appliances for obstructive sleep apnoea in children. Cochrane Database Syst Rev 2007; 18 (02) CD005520
  • 35 Schwab RJ. Genetic determinants of upper airway structures that predispose to obstructive sleep apnea. Respir Physiol Neurobiol 2005; 147 (2–3) 289-298
  • 36 Lowe AA, Ozbek MM, Miyamoto K et al. Cephalometric and demographic characteristics of obstructive sleep apnea: an evaluation with partial least squares analysis. Angle Orthod 1997; 67 (02) 143-153
  • 37 Bloch KE, Iseli A, Zhang JN et al. A randomized, controlled crossover trial of two oral appliances for sleep apnea treatment. Am J Respir Crit Care Med 2000; 162 (01) 246-251
  • 38 Marklund M. Predictors of long-term orthodontic side effects from mandibular advancement devices in patients with snoring and obstructive sleep apnea. Am J Orthod Dentofacial Orthop 2006; 129 (02) 214-221
  • 39 Welch KC, Foster GD, Ritter CT et al. A novel volumetric magnetic resonance imaging paradigm to study upper airway anatomy. Sleep 2002; 25 (05) 532-542
  • 40 Caples SM, Rowley JA, Prinsell JR et al. Surgical modifications of the upper airway for obstructive sleep apnea in adults: a systematic review and meta-analysis. Sleep 2010; 33 (10) 1396-1407
  • 41 Holty JE, Guilleminault C. Maxillomandibular advancement for the treatment of obstructive sleep apnea: a systematic review and meta-analysis. Sleep Med Rev 2010; 14 (05) 287-297
  • 42 Pirklbauer K, Russmueller G, Stiebellehner L et al. Maxillomandibular advancement for treatment of obstructive sleep apnea syndrome: a systematic review. J Oral Maxillofac Surg 2011; 69 (06) e165-e176
  • 43 Riley RW, Powell NB, Li KK et al. Surgery and obstructive sleep apnea: long-term clinical outcomes. Otolaryngol Head Neck Surg Mar 2000; 122 (03) 415-421
  • 44 Liukkonen M, Vähätalo K, Peltomäki T et al. Effect of mandibular setback surgery on the posterior airway size. Int J Adult Orthodon Orthognath Surg 2002; 17 (01) 41-46
  • 45 Mattos CT, Vilani GN, Sant’Anna EF et al. Effects of orthognathic surgery on oropharyngeal airway: a meta-analysis. Int J Oral Maxillofac Surg 2011; 40 (12) 1347-1356